
 

UNIVERSIDADE DE SÃO PAULO 

ESCOLA DE ENGENHARIA DE LORENA – EEL/USP 

  

  

  

  

  

JOÃO RICARDO JOHNSON 

 

 

 

 

 

 

 

 

 

SIMULAÇÃO DA ESTABILIDADE DE UM SISTEMA DE CONTROLE EM UM 

TANQUE DE AQUECIMENTO COM AGITAÇÃO SOB AÇÃO PID 

 

 

 

 

 

 

 

 

 

 

 

 

Lorena – SP 

2021 



 

JOÃO RICARDO JOHNSON 

  

  

  

  

  

  

SIMULAÇÃO DA ESTABILIDADE DE UM SISTEMA DE CONTROLE EM UM 

TANQUE DE AQUECIMENTO COM AGITAÇÃO SOB AÇÃO PID 

 

   

Trabalho de conclusão de curso 
apresentado à Escola de Engenharia 
de Lorena da Universidade de São 
Paulo como requisito parcial para 
obtenção do título de Engenheiro 
Químico. 

 
Área de Concentração: Controle de 
Processos Químicos 

 
Orientador: Prof. Dr. Luiz Carlos de     
Queiroz  

  
  

  

  

  

  

  

  

  

 

 

 

Lorena – SP 

2021 



AUTORIZO A REPRODUÇÃO E DIVULGAÇÃO TOTAL OU PARCIAL DESTE
TRABALHO, POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO,
PARA FINS DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE

Ficha catalográfica elaborada pelo Sistema Automatizado
da Escola de Engenharia de Lorena, 

com os dados fornecidos pelo(a) autor(a)

Johnson, João Ricardo 
   Simulação da estabilidade de um sistema de
controle em um tanque de aquecimento com agitação sob
ação PID / João Ricardo  Johnson; orientador Luiz
Carlos de Queiroz. - Lorena, 2021.
 63 p.

   Monografia apresentada como requisito parcial
para a conclusão de Graduação do Curso de Engenharia
Química - Escola de Engenharia de Lorena da
Universidade de São Paulo. 2021

   1. Estabilidade. 2. Controlador proporcional
integral-derivativo. 3. Tanque de aquecimento com
agitação. I. Título. II. de Queiroz, Luiz Carlos,
orient.



 

AGRADECIMENTOS 

 

À minha mãe Cleusa Sgarioni, que não mediu esforços para que eu, hoje, 

pudesse realizar o sonho de ser um engenheiro graduado pela Universidade de 

São Paulo. 

Ao professor doutor Luiz Carlos de Queiroz, pela compreensão, paciência e 

orientações necessárias para a elaboração da monografia. 

À Escola de Engenharia de Lorena por ter me proporcionado um imensurável 

crescimento pessoal e profissional. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

RESUMO 
 

JOHNSON, J. R. Simulação da estabilidade de um sistema de controle em um 
tanque de aquecimento com agitação sob ação PID. 2021. 63 f. Monografia 
(Trabalho de Conclusão de Curso em Engenharia Química) – Escola de Engenharia 
de Lorena, Universidade de São Paulo, Lorena, 2021.   
  
O controle de processos é essencial ao projeto de uma planta química por 
compensar eventuais desvios das variáveis de processo que devem se manter em 
valores especificados. A fim de argumentar sobre o caráter imprescindível do 
controle, esta monografia apresentou como exemplo de processo um tanque de 
aquecimento com agitação contínua. O produto na saída corre o risco de não 
garantir uma composição uniforme ao se decompor em altas temperaturas ou se 
tornar uma mistura incompleta, em baixas temperaturas. Por isso, é essencial que 
esse processo tenha uma malha de controle de temperatura. O tanque é alimentado 
com um fluido que, agitado sob certa temperatura, a propriedade pretendida pelo 
projeto é alcançada. O processo é controlado por um controlador proporcional-
integral-derivativo (PID), cuja variável controlada é a temperatura de saída. Essa 
deve ser mantida em um valor desejado de projeto (set point). Uma perturbação 
ocorre na temperatura de entrada e, de acordo com o que ocorre na saída medida 
constantemente, o controlador direciona sua tomada de decisão à válvula de 
injeção de vapor a fim de minimizar o desvio na resposta. O ponto crítico do ganho 
proporcional Kc foi calculado com o objetivo de analisar a estabilidade do sistema 
para três diferentes valores de Kc. Um menor que o ponto crítico, um exatamente 
no ponto crítico e um maior que o ponto crítico. Pelo método analítico de Routh 
obteve-se o valor crítico de 5,8426. Pelos métodos numéricos desenvolvidos no 
software MATLAB (Matrix Laboratory), como o Método Newton-Raphson com 
divisões sintéticas e o Método de Bissecção, o valor obtido se encontrou entre 
5,841932 e 5,841942. Os outros ajustes escolhidos foram 3 e 10. Por meio de 
gráficos gerados no software, foi visualizada a influência do ganho proporcional na 
estabilidade e os possíveis comportamentos dinâmicos da resposta às 
perturbações impulso e degrau. Deste modo, foi constatado que, dentre as três 
condições de estabilidade simuladas, o controle PID teve melhor desempenho 
quando Kc = 3. 
 
Palavras-chave: Estabilidade. Controlador proporcional-integral-derivativo. Tanque 
de Aquecimento com Agitação.  
  

  

  

  

 

 

 

 

  



 

ABSTRACT  
 

JOHNSON, J. R. Stability simulation of a three-mode feedback control system 
in a stirred-tank heater. 2021. 63 p. Monography (Term Paper in Chemical 
Engineering) – Escola de Engenharia de Lorena, Universidade de São Paulo, 
Lorena, 2021. 
 
Process control is essential to the design of a chemical plant as it compensates for 
any deviations from process variables that must remain at specified values. In order 
to argue about the essential nature of control, this monography presented as an 
example of a process a continuous stirred-tank heater. The product at the exit runs 
the risk of not guaranteeing a uniform composition when decomposing at high 
temperatures or becoming an incomplete mixture at low temperatures. Therefore, it 
is essential that this process has a temperature control loop. The tank is fed with a 
fluid which, when stirred at a certain temperature, the property intended by the 
design is achieved. The process is controlled by a proportional-integral-derivative 
(PID) controller, whose controlled variable is the outlet temperature. This must be 
kept at a desired design value (set point). A disturbance occurs in the inlet 
temperature and, according to what happens in the constantly measured outlet, the 
controller directs its decision making to the steam injection valve in order to minimize 
the deviation in the response. The critical point of the Kc proportional gain was 
calculated in order to analyze the stability of the system for three different values of 
Kc. One lower than the critical point, one exactly at the critical point, and one greater 
than the critical point. By the analytical method of Routh, the critical value of 5.8426 
was obtained. By the numerical methods developed in the MATLAB software (Matrix 
Laboratory), such as the Newton-Raphson Method with synthetic divisions and the 
Bisection Method, the obtained value was found between 5.841932 and 5.841942. 
The other settings chosen were 3 and 10. Through graphics generated in the 
software, the influence of the proportional gain on stability and the possible dynamic 
behaviors of the response to impulse and step disturbances were visualized. Thus, 
it was found that, among the three simulated stability conditions, the PID control 
performed better when Kc = 3. 
 
Keywords: Stability. Three-mode controller. Stirred-tank heater.  
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1 INTRODUÇÃO  

  

O controle de processos químicos é imprescindível para uma planta química 

que demanda a manutenção das variáveis de processo dentro dos valores 

desejados em um projeto. O sistema de controle é de enorme utilidade, 

independentemente do tipo de processo ou condições operacionais envolvidas. 

Qualquer indústria que almeja o sucesso em âmbitos comerciais, econômicos e 

socioambientais o tem como parte integrada (SALVARANI, 2015).  

Os benefícios de se empregar uma malha de controle são diversos. Dentre 

eles, se destacam a previsibilidade adquirida diante de um comportamento 

naturalmente dinâmico, a manutenção contínua da qualidade do produto e a 

diminuição da necessidade do trabalho humano. Deste modo, a lucratividade e a 

produtividade estão diretamente relacionadas ao bom funcionamento do controle 

(SMITH; CORRIPIO, 2008). 

Além disso, deve-se salientar que a segurança operacional e a proteção 

ambiental são exigências da legislação no âmbito industrial. Dessa forma, variáveis 

do processo que causam desordem e possíveis acontecimentos danosos tanto aos 

operadores quanto ao meio ambiente devem ser submetidos ao controle de 

processos. Como exemplo, um controlador bem mensurado pode evitar o 

transbordamento de tanques, excesso de rejeitos, explosões e até possíveis 

acidentes operacionais (STEPHANOPOULOS, 1984).  

De acordo com Smith e Corripio (2008), existem duas condições de controle 

distintas. Na condição manual, um operador deve observar constantemente o que 

ocorre com a medição da variável controlada para intervir no processo. Esta forma 

de controle não foi o enfoque do trabalho, e sim a condição automática que 

substituiu amplamente a primeira em processos químicos, principalmente por 

minimizar os erros gerados pelo modo manual. 

O controlador, antes de fazer parte de um sistema real, deve passar por 

testes que simulam eventuais perturbações para provar assim sua capacidade de 

compensar os efeitos dessas sobre o produto de interesse (CARVALHO, 2014). O 

comportamento dinâmico desses sistemas é descrito em equações diferenciais 

lineares e convertidos em transformadas de Laplace. Portanto o uso de um software 

computacional é indispensável para examinar a relação controle-sistema. 
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1.1 Objetivo geral  

 

 Avaliar a influência do ganho proporcional (Kc) na estabilidade de um tanque 

de aquecimento com agitação contínua controlado por um sistema de 

realimentação PID. 

  

1.2 Objetivos específicos  

  

• Analisar a estabilidade do sistema pelo método analítico de Routh e obter o 

ponto crítico do Kc; 

• Executar métodos numéricos usando linguagem de programação do 

MATLAB para pesquisar o ponto crítico; 

• Simular as respostas do sistema às perturbações impulso e degrau para 

diferentes valores de Kc; 

• Determinar o desempenho do controle PID para as condições de 

estabilidade simuladas. 
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2 REVISÃO BIBLIOGRÁFICA 

  

2.1 Controle de Processos Químicos  

  

O projeto de uma planta química impõe que sua operação cubra várias 

exigências para que as variáveis de processo sejam mantidas com valores 

especificados. Para que essas especificações sejam garantidas, malhas de 

controle são necessárias, interligando-se à planta, e conservando estas variáveis 

nos valores desejados de projeto (STEPHANOPOULOS, 1984).   

Segundo Smith e Corripio (2008), um sistema de controle necessariamente 

deve apresentar três componentes básicos: transmissor-sensor, controlador e 

elemento final de controle. Esses componentes têm uma grande relevância, pois 

vão realizar os três procedimentos básicos de um sistema de controle.  

São estes:  

• Medição da variável controlada, realizada pelo transmissor-

sensor, onde se inicia o monitoramento;  

• Decisão, que é tomada pelo controlador para manter a variável 

controlada em seu valor de projeto;  

• Ação, que é o resultado efetivo da decisão do controlador e 

ocorre no elemento final de controle (geralmente, uma válvula de 

controle).   

O controle de malha fechada se dá quando a ação, ao ser efetuada, gera 

uma mudança na medição da variável controlada e, consequentemente, na decisão 

do controlador. Estas etapas se repetem e um ciclo é gerado. Já, a condição de 

malha aberta consiste na inexistência desse ciclo. Não há uma realimentação e a 

medição da variável controlada não altera o sinal de saída do controlador (SMITH; 

CORRIPIO, 2008). 

Conforme Ogata (2011), deve-se conceituar alguns termos que sempre 

fazem parte do assunto:  

• Variável controlada: é a variável cujo valor real deve ser 

mantido em um set point (valor de referência);  

• Variável manipulada: é a variável cujo ajuste mantêm ou 

aproxima a variável controlada do set point;  
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• Distúrbio: variável que sofre mudança durante o processo e 

causa o afastamento da variável controlada em relação ao set point.  

Este trabalho deu maior enfoque à estratégia de realimentação, cujo controle 

é baseado no sinal de transmissão proveniente da medição da variável controlada.  

O controlador não tem conhecimento da origem e nem do tipo de distúrbio, apenas 

o que ele causa. Porém, a desvantagem é que esse deve esperar a propagação do 

distúrbio ao longo do processo até atingir a variável controlada (SMITH; CORRIPIO, 

2008). 

 

2.2 Controladores de Realimentação  

  

De acordo com Stephanopoulos (1984), os controladores são os dispositivos 

responsáveis por manter a variável monitorada em um ponto fixo. Sua função é 

receber o sinal de transmissão e compará-lo ao sinal do set point, pré-programado. 

Assim, a entrada do controlador é o erro. Esse erro é a diferença entre o ponto fixo 

e o valor real da variável controlada em certo instante. Através desse erro, o sinal 

de saída do controlador é gerado. Esse sinal ajusta a variável manipulada e 

minimiza o erro.  

Os controladores de realimentação podem ser classificados de acordo com 

o número de ações para solucionar o erro:  

• Controlador Proporcional (P);  

• Controlador Proporcional-Integral (PI);  

• Controlador Proporcional-Integral-Derivativo (PID).  

Segundo Smith e Corripio (2008), essa espécie de controlador decide como 

executar o controle de acordo com a solução de uma equação baseada na 

diferença entre a variável controlada e o set point.  

 

2.2.1 CONTROLADOR PROPORCIONAL (P)  

  

É o controlador que tem seu sinal de saída proporcional ao erro. Segundo 

Stephanopoulos (1984), a Equação 2.1 descreve seu comportamento:  

 

 

 

 ܿሺݐሻ = ܿ௦ + �௖ ∗ ݁ሺݐሻ (2.1) 
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Onde:  

  ;sinal de saída do controlador em certo tempo – (ݐ)ܿ •

• ܿ௦  – bias, ou sinal de saída do controlador no estado 

estacionário inicial, quando o erro é nulo;  

• �௖ – ganho proporcional do controlador;  

  .erro em certo tempo – (ݐ)݁ •

A função de transferência (FT) do controlador pode ser obtida através da 

equação em variável de desvio. Ao escrever a Equação 2.1 em variável-desvio, 

tem-se a Equação 2.2:            

 

ሻݐሺܥ                = �௖ ∗  ሻ   (2.2)ݐሺܧ

   
Onde:  

ሻݐሺܥ • = ܿሺݐሻ − ܿ௦ ; variável de desvio é a diferença entre a 

grandeza em certo tempo e seu valor em estado estacionário;  

ሻݐሺܧ • = ݁ሺݐሻ − ݁௦; ݁௦ = Ͳ; o erro no estado estacionário inicial é 

nulo.  

Ao aplicar transformada de Laplace (TL) na Equação 2.2, tem-se a FT do 

controlador P na Equação 2.3: 

   

  

  

  

�௖ሺݏሻ = �௖ (2.3) 

Para Smith e Corripio (2008), a vantagem de se utilizar esse controlador é 

que ele apresenta apenas um parâmetro de sintonia, o ganho proporcional (Kc), o 

que facilita a sintonização. Entretanto, a desvantagem é a presença permanente de 

um erro residual (offset), o que afasta constantemente a variável controlada do set 

point.  

Na Figura 2.1, pode-se observar que mesmo após a ação do controlador, 

um erro residual ainda persiste em estado estacionário.  
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Figura 2.1 – Resposta do nível de líquido ao longo do tempo com diferentes ganhos 
proporcionais. 
 

 
 
Fonte: SMITH; CORRIPIO, 2008, p. 160  
 

Percebe-se, pela Figura 2.1, que quanto maior é o Kc, menor é o offset, 

porém maior é a oscilação do processo, ou seja, mais instável. Para a maior parte 

dos processos, há um ganho máximo que, ultrapassado, o sistema torna-se 

instável. Consequentemente, para manter a estabilidade, o erro em estado 

estacionário não pode ser completamente eliminado (SMITH; CORRIPIO, 2008).   

  

2.2.2 CONTROLADOR PROPORCIONAL-INTEGRAL (PI)  

  

É o controlador utilizado quando não é possível operar com offset. Neste 

controle, existem duas ações que atuam conjuntamente, a proporcional e a integral. 

Também é conhecido como controlador proporcional e restaurador, segundo 

Stephanopoulos (1984). Sua Equação 2.4 é descrita a seguir:  

 

   
   
  

ܿሺݐሻ = �௖ ∗ ݁ሺݐሻ + �௖�� ∫ ݁ሺݐሻ ݀ݐ + ܿ௦ 
(2.4) 

 

 

Onde:  �� - tempo integral ou de restauração, em minutos;  

O tempo integral é o parâmetro de sintonia juntamente com o Kc. Nesse 

controle, o erro no estado estacionário é totalmente eliminado. O controlador PI 

varia constantemente sua saída enquanto o erro ainda estiver presente. Ocorre a 

integração do erro. Somente quando o erro é zerado que a variação na saída do 
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controlador cessa. Assim, a variável controlada retorna ao set point 

(STEPHANOPOULOS, 1984).  

A FT é obtida ao seguir o mesmo procedimento do controlador P ao aplicar 

variável-desvio e TL, na Equação 2.5:  

 

 �௖ሺݏሻ = ሻݏሺܧሻݏሺܥ = �௖ (ͳ + ͳ��ݏ) 
  

(2.5) 
 

      

A Figura 2.2 ilustra como a ação integral anula o erro residual através da 

integração:  

 

Figura 2.2 – Resposta do nível de líquido ao longo do tempo com controladores PI e P  
 

 
 

Fonte: SMITH; CORRIPIO, 2008, p. 164 
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De acordo com Kwong (2002), o uso do controle PI tem algumas 

desvantagens. Pode gerar comportamento oscilatório em processos de primeira 

ordem. Já um processo de segunda ordem pode se tornar instável com esse tipo 

de controlador.  

Na Figura 2.3, é demonstrado o significado físico do tempo integral. Esse é 

o intervalo de tempo necessário para que o controlador repita a ação tomada pelo 

modo proporcional (SMITH; CORRIPIO, 2008). Assim que o controlador é 

informado do erro em t = 0, ocorre uma variação degrau em sua saída. O tempo 

que leva para que essa variação se repita é o tempo integral ou de restauração. 

 

Figura 2.3 – Resposta do controlador PI a uma variação em degrau no erro 
 

 
 
Fonte: STEPHANOPOULOS, 1984, p. 247  
 

2.2.3 CONTROLADOR PROPORCIONAL-INTEGRAL-DERIVATIVO (PID)  

  

Este é o controlador mais sofisticado descrito até aqui. A ação derivativa, 

também conhecida como antecipatória, tem como objetivo dar ao controlador o 

poder de antecipar o comportamento do erro em relação ao tempo ao examinar a 

sua derivada (SMITH; CORRIPIO, 2008). Possui três parâmetros a serem 

sintonizados: o ganho Kc, o tempo de restauração (��) e o tempo derivativo (�ௗ).   

A Equação 2.6, segundo Stephanopoulos (1984), é descrita a seguir:  

               
  ܿሺݐሻ = �௖ ∗ ݁ሺݐሻ + �௖�� ∫ ݁ሺݐሻ ݀ݐ + �ܿ ∗ �ௗ ∗ ݀݁ሺݐሻ݀ݐ + ܿ௦ 

 (2.6) 
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A FT desse controlador é encontrada do mesmo modo que os controladores 

P e PI, na Equação 2.7:  

            �௖ሺݏሻ = �௖ ∗ (ͳ + ͳ��ݏ + �ௗݏ) 

 

   

(2.7)  
 

O controlador PID procura minimizar o desvio da variável de processo ao se 

basear na taxa de variação do erro ao longo do tempo. Sensível à velocidade de 

aumento ou diminuição do erro, reduz as oscilações ao redor do set point. Esse 

controle não atua quando o erro é constante, apenas quando varia. A estabilidade 

do sistema é, assim, garantida de forma mais rápida (STEPHANOPOULOS, 1984).  

De acordo com Smith e Corripio (2008), esses controladores são indicados 

para processos mais lentos, como malhas de temperatura, que não apresentam 

ruídos.  
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2.2.4 AÇÃO DIRETA E REVERSA DO CONTROLADOR 

 

O desvio da variável controlada em relação ao set point e a tomada de 

decisão do controlador para minimizá-lo determina o sinal matemático do Kc em 

uma malha de realimentação.  

De acordo com a definição do erro descrita na seção 2.2 e conforme Smith 

e Corripio (2008), um aumento na variável controlada em relação ao set point pode 

diminuir o sinal do controlador. Neste caso, a ação de controle é reversa e Kc 

adquire sinal positivo. Caso contrário, onde o aumento da variável controlada causa 

um aumento no sinal do controlador, a ação é direta e Kc adquire um sinal negativo. 

Sistemas de aquecimento com injeção de vapor é um exemplo típico de 

controle com ação reversa, pois quando a temperatura de saída aumenta em 

relação ao set point, o controlador decide pelo maior fechamento da válvula para 

menor entrada de vapor e, consequentemente, menos transferência de calor, para 

minimizar o desvio. Já, sistemas de controle de nível como o citado na Figura 2.2, 

são típicos de ação direta, onde o controlador decide por um aumento da vazão de 

saída caso a altura do líquido no reservatório se eleve em comparação com a altura 

no regime estacionário. Nesses casos, é considerado que o aumento do sinal do 

controlador representa abertura da válvula e a queda do sinal, fechamento (SMITH; 

CORRIPIO, 2008).  

  

2.3 Estabilidade  

  

2.3.1 CONCEITO DE ESTABILIDADE  

  

Conforme Coughanowr e Koppel (1978), “[...] um sistema estável será aquele 

para o qual a resposta de saída é limitada para todas as entradas limitadas.”  

Já Stephanopoulos (1984, tradução nossa) constata que “um sistema é 

considerado instável se, após esse ter sido perturbado por uma mudança na 

entrada, sua saída se deslocou e não retornou ao estado inicial de repouso”. 

As Figuras 2.4 e 2.5 ilustram de forma simplificada a definição de sistemas 

estável e instável: 
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Figura 2.4 – Sistema estável ou auto regulatório1 
 

  
 
Fonte: Departamento de Engenharia Química da Universidade Federal de São Carlos.  
 

Figura 2.5 – Sistema instável2  
 

 
 
Fonte: Departamento de Engenharia Química da Universidade Federal de São Carlos.  
 

2.3.2 FUNÇÕES DEGRAU E IMPULSO 

 

Como exemplos de entradas limitadas tem-se as funções degrau e impulso, 

ilustradas nas Figuras 2.6 e 2.7, respectivamente. São funções que, no domínio do 

tempo, convergem a um valor finito.  

 

 

 

 

 

 

 

 
1  Disponível em: <http://www.professores.deq.ufscar.br/ronaldo/cp1/pdf/aula12.pdf> Acesso em 
maio de 2018.  
2  Disponível em: <http://www.professores.deq.ufscar.br/ronaldo/cp1/pdf/aula12.pdf> Acesso em 
maio de 2018.  

http://www.professores.deq.ufscar.br/ronaldo/cp1/pdf/aula12.pdf
http://www.professores.deq.ufscar.br/ronaldo/cp1/pdf/aula12.pdf
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Figura 2.6 – Função degrau unitário3 
 

 
 
Fonte: Departamento de Engenharia Elétrica da PUC-Rio 
 

Pode-se interpretar uma perturbação na entrada em degrau como uma 

variação brusca em certo instante que permanece constante ao longo do tempo 

(OGATA, 2011). Como exemplo, pode-se considerar uma torneira, que ao ser 

aberta, o registro é deixado na mesma posição sem variação do fluxo de água. De 

nulo, o fluxo passou a ser constante. 

 

Figura 2.7 – Função impulso unitário4 
 

 
 
Fonte: Departamento de Engenharia Elétrica da PUC-Rio 
 

 
3  Disponível em: <http://www.maxwell.vrac.puc-rio/29821/introducao.html> Acesso em junho de 
2021.  
4  Disponível em: <http://www.maxwell.vrac.puc-rio/29821/introducao.html> Acesso em junho de 
2021.  
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Já uma perturbação na entrada em impulso pode ser interpretada como uma 

variação altíssima em um instante infinitamente pequeno, que retorna ao valor de 

zero ao longo do tempo. O infinito, neste caso, pode ser interpretado como um 

altíssimo valor. Como exemplo, um choque térmico exemplifica bem a função 

impulso. 

De acordo com Ogata (2011), essas perturbações são frequentemente 

usadas para simular a resposta de um sistema submetido a um controle, e sua 

estabilidade. No caso de um sistema que sofre variações bruscas na entrada e o 

novo valor permanece, a função degrau é um sinal de teste mais apropriado. Em 

contrapartida, a função impulso é mais recomendável para variações de impacto. 

 

2.3.3 POLOS E ZEROS 

 

A fim de compreender melhor o conceito de estabilidade, deve-se conceituar 

polos e zeros. Considere a FT abaixo: 

 �ሺݏሻ = �ሺݏሻܦሺݏሻ 

 
(2.8) 

 �ሺݏሻ e ܦሺݏሻ são polinômios (numerador e denominador) irredutíveis entre si, 

isto é, não apresentam fatores comuns. ܦሺݏሻ possui grau maior que �ሺݏሻ para que 

o sistema seja fisicamente realizável. Zeros (ݖሻ são as raízes do numerador e, 

consequentemente  �ሺݖሻ → Ͳ  quando ݏ = ݖ . Polos ሺ݌ሻ  são as raízes do 

denominador e, desse modo, �ሺ݌ሻ → ∞  quando ݏ = ݌  (STEPHANOPOULOS, 

1984). 

 

2.3.4 CRITÉRIO DE ESTABILIDADE 

 

A resposta para um sistema de controle em malha fechada é descrita a 

seguir pela Equação 2.9, dada por Stephanopoulos (1984):  

 

 (2.9) 
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Que é equivalente à Equação 2.10:  

 

 (2.10)     (ݏ)݀ ∗ ሻݏ)݀ܽ݋݈� + (ݏ)݌ݏ� ∗ ሻݏ)݌ݏ� = (ݏ)�                   

 

A estabilidade da resposta em malha fechada é determinada pelos polos de �(ݏ)݌ݏ e �݈(ݏ)݀ܽ݋.  

Os polos são iguais para ambas as funções, pois os denominadores da 

Equação 2.9 são iguais:  

 

 (2.11)    0 = (ݏ)݉�(ݏ)ܿ�(ݏ)݂�(ݏ)݌� + 1

 

A Equação 2.11 é a equação característica do sistema. A estabilidade do 

mesmo depende das raízes da equação acima. Tanto é que essa equação se 

chama “característica” por caracterizar o comportamento da resposta do sistema 

em malha fechada. 

 Ao resolvê-la, suas raízes (݊݌) são obtidas na Equação 2.12:  

 

 (2.12)   0 = (݊݌ − ݏ2ሻ … ሺ݌ − ݏ) (1݌ − ݏ) = (ݏ)݉�(ݏ)ܿ�(ݏ)݂�(ݏ)݌� + 1

 

Pode-se concluir como primeiro critério de estabilidade que um sistema de 

controle de realimentação é considerado estável quando todos os polos (raízes da 

equação característica) são números reais negativos e pares conjugados 

complexos com parte real negativa. Em contrapartida, caso um dos polos é real 

positivo ou os pares conjugados complexos ter parte real positiva, o sistema é 

instável (STEPHANOPOULOS, 1984).  

Para compreender melhor a razão disso ocorrer, a Equação 2.9 deve ser 

expandida em frações parciais:  

 �ሺݏሻ = ௕భ௦−�భ + ௕మ௦−�మ + ⋯ + ௕೙௦−�೙ +  çܽ݀ܽ   (2.13)ݎ݋݂ ܽݐݏ݋݌ݏ݁ݎ
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Ao aplicar transformada de Laplace inversa (TLI) na Equação 2.13, tem-se a 

função temporal 2.14, que descreve o perfil da resposta em malha fechada após a 

perturbação na entrada: 

ሻݐሺݕ  = ܾଵ ∗ ݁�ଵ௧ + ܾଶ ∗ ݁�ଶ௧ + ⋯ + ܾ௡ ∗ ݁�௡௧ +  çܽ݀ܽ   (2.14)ݎ݋݂ ܽݐݏ݋݌ݏ݁ݎ

 

Conforme Smith e Corripio (2008), a resposta global é a soma da resposta 

natural com a resposta forçada. A forçada é gerada pelos polos da perturbação na 

entrada e a natural é oriunda dos polos da FT. 

A estabilidade em um sistema linear depende exclusivamente da sua 

equação característica, ou seja, é uma propriedade inerente ao sistema, somente 

quando as formas de estímulo são limitadas, como o impulso ou degrau. Já, aonde 

o estímulo limitado ocorre, se é na carga ou no set point, isso não interfere na 

estabilidade. (COUGHANOWR; KOPPEL, 1978). 

Segundo Smith e Corripio (2008), para raízes reais: caso                   0 > ݌, então ݁�௧  tende a 0 ao passo que o tempo tende ao infinito. Para raízes 

complexas ݌ = α + β�, então ݁�௧  = ݁α௧  ∗ ݊݁ݏ (βݐ + θ). Caso α < 0, então ݁α௧ ∗ ݊݁ݏ (βݐ + 

θ) tende a 0 ao passo que o tempo tende ao infinito.  

Logo, a parte real das raízes complexas e as raízes reais da equação 

característica devem ser negativas para os termos da resposta tenderem a 0. Isto 

significa que a resposta é limitada ao decorrer do tempo. Quando um termo 

exponencial é decrescente, esse indica que ocorre estabilidade. Quando são 

gerados termos exponenciais crescentes na resposta da malha, surge instabilidade 

no sistema. O plano complexo s apresentado pela Figura 2.8 posiciona as raízes 

em regiões estável e instável ao delimitá-las com o eixo vertical imaginário e o eixo 

horizontal real (SMITH; CORRIPIO, 2008).  
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Figura 2.8 – Plano s (região estável à esquerda e região instável à direita)  
 

 
 

Fonte: CARVALHO, 2014, p. 22  
  

2.3.5 TESTE DE ESTABILIDADE DE ROUTH 

  

Este teste de estabilidade não é baseado em calcular os valores das raízes 

da equação característica, conforme Stephanopoulos (1984). O critério requer 

saber se há alguma raiz no lado direito do eixo imaginário do plano s.  

Coughanowr e Koppel (1978) averiguaram que, caso a equação 

característica apresente raízes com partes reais positivas, isso já comprova a 

instabilidade do sistema. Caso não apresente, o sistema é estável.  

Para isso, é necessário escrever a Equação característica 2.11 em sua forma 

polinomial, como na Equação 2.15:  

 (2.15)    0 = ݊ܽ + ݏ ∗ 1−݊ܽ + ⋯ + 1−݊ݏ ∗ 1ܽ + ݊ݏ ∗ 0ܽ 

 
Onde ܽ0 > 0.  

Caso ܽ0 < 0, deve-se multiplicar a equação por -1. Todos os coeficientes 

devem ser positivos. Caso um coeficiente seja negativo, o sistema já é declarado 

instável e não há necessidade de prosseguir o teste. Se todos os coeficientes do 

polinômio de grau n forem positivos, o sistema pode ser estável ou instável. 

Portanto, deve-se realizar o segundo teste, que é o arranjo de Routh. Nesse arranjo, 

os coeficientes devem ficar nas duas primeiras linhas. O arranjo deve ter n+1 linhas. 
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Se o polinômio tiver 7 coeficientes, por exemplo, o arranjo tem que ter 8 linhas 

(COUGHANOWR; KOPPEL, 1978).  

A Tabela 2.1 apresenta o arranjo de Routh: 

  

Tabela 2.1 – Arranjo de Routh  
 

Linhas Coeficientes    

1 a0 a2 a4 a6 

2 a1 a3 a5 a7 

3 b1 b2 b3  

4 c1 c2 c3  

5 d1 d2   

6 e1 e2   

7 f1    

n+1 g1    

 
Fonte: Adaptado de (COUGHANOWR; KOPPEL, 1978, p. 150)  
 

Os elementos a partir da linha 3 são encontrados com as equações 

subsequentes:  

 
  (2.16) 

 
  (2.17) 

 
  (2.18) 

 
  (2.19) 

 
 

Os elementos restantes são calculados ao seguir a lógica das Equações 

2.16, 2.17, 2.18 e 2.19. Finalizados os cálculos, é verificado se os elementos da 

primeira coluna são positivos e diferentes de zero. Caso sejam, o sistema é estável. 

Se algum elemento dessa coluna for negativo, o sistema é instável. O número de 
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trocas de sinal da primeira coluna é igual ao número de raízes com parte real 

positiva (STEPHANOPOULOS, 1984). 
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3 METODOLOGIA  

  

3.1 Processo Proposto  

  

Esta monografia abordou sobre um processo teórico proposto por 

Constantinides e Mostoufi (1999). Segundo Smith e Corripio (2008), um tanque de 

aquecimento com agitação contínua cujo fluxo de alimentação é líquido precisa ser 

mantido sob aquecimento para manter sua composição uniforme. Nesses tipos de 

reservatórios com agitação, é fundamental o controle da temperatura para o 

produto final não se decompor em altas temperaturas, nem se tornar uma mistura 

incompleta em baixas temperaturas. Uma válvula injetora de vapor é conectada ao 

processo para que haja entrada de vapor e consequente transferência de calor 

latente ao fluido, devido à condensação. Assim se dá o aquecimento da matéria-

prima.  

O processo é submetido a um sistema de realimentação em malha fechada 

sob ação proporcional-integral-derivativa (PID). O controlador toma a decisão sobre 

a posição da válvula (variável manipulada), o que gera seu fechamento ou abertura 

diante da medição. A perturbação, de acordo com Constantinides e Mostoufi 

(1999), ocorre na temperatura de entrada (carga) e causa o desvio da temperatura 

de saída em relação ao set point. A Figura 3.1 esquematiza o tanque sugerido: 

 

Figura 3.1 – Tanque de aquecimento sob agitação contínua 
 

 
 

Fonte: CARVALHO, 2014, p. 25 
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A finalidade do controlador PID é retornar a temperatura de saída em seu set 

point, ao minimizar o erro, até zerá-lo. Por isso, é relevante analisar a estabilidade 

do processo a partir do seu Kc. O ganho crítico é calculado, e a partir desse, a 

estabilidade do processo pode ser analisada para diferentes valores. 

A FT global do sistema em malha fechada é dada em Constantinides e 

Mostoufi (1999). A modelagem que resulta nessa função é demonstrada na seção 

seguinte.  

 

3.2 Modelagem 

 

A Figura 3.2 demonstra como um processo pode ser dividido em 

componentes, definidos num diagrama de blocos. Portanto, de acordo com 

Coughanowr e Koppel (1978), o processo proposto pode ser desmembrado em 

processo, elemento de medida (sensor-transmissor), elemento final de controle 

(válvula de injeção de vapor) e o controlador PID.   

 

Figura 3.2 – Diagrama de blocos para um sistema de controle simples  
 

 
 
Fonte: COUGHANOWR; KOPPEL, 1978, p. 99  
 

Constata-se em Constantinides e Mostoufi (1999) que todos os componentes 

do processo são sistemas de primeira ordem. Portanto, suas FT’s também são.   

Para se chegar à FT global, é considerado um balanço de energia para o 

tanque em regime transiente:  

 

  (3.1) 

Onde:  
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•  – fluxo térmico proveniente do vapor;  

•  – vazão mássica;  

•  – calor específico do fluido;  

• ܶ� – temperatura de entrada;  

• ܶ0 – temperatura de referência (set point);  

• � – densidade do fluido;  

•  – volume de fluido dentro do tanque.  

 

A Equação 3.1 é descrita em regime estacionário, quando  :  

  (3.2)   0 = (0ܶ − ݏܶ) ܥݓ − 0ሻܶ − ݏ�ܶ) ܥݓ + ݏݍ 

 

A Equação 3.2 é subtraída da Equação 3.1 e as variáveis-desvio surgem na 

Equação 3.3:  

 

 

 

Onde são substituídas pelas Equações 3.4, 3.5 e 3.6:  

  

ݍ • − ௦ݍ = ܳ  (3.4)  

  (3.5)   �′ܶ = ݏ�ܶ − �ܶ •

  (3.6)   ′ܶ = ݏܶ − ܶ •

 

Portanto, obtêm-se a Equação 3.7:  

 

   (3.7) 

 

Ao aplicar a TL, obtêm-se a Equação 3.8:  

 ܶ′ሺݏሻ ቀ��௪ ∗ ݏ + ͳቁ = ொሺ௦ሻ௪஼ + ܶ′�ሺݏሻ           (3.8) 

 

A expressão anterior é descrita conforme a Equação 3.9:  
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              (3.9)  

 

Onde:   

Quando o processo apresenta somente variação na temperatura, ܳ(ݐ) = 0, 

tem-se a seguinte FT descrita na Equação 3.10:  

 

            (3.10)  

 

Quando o processo apresenta somente variação na entrada de calor, ܶ′�ሺݐሻ 
= 0, tem-se a seguinte FT descrita na Equação 3.11:  

 

        (3.11)  

 

Onde: �݌ – ganho estático de primeira ordem do processo e �݌ – constante 

de tempo de primeira ordem para o processo.  

Agora, conforme Coughanowr e Koppel (1978), é determinada na Equação 

3.12 a FT do elemento de medida, que como já foi dito, é um sistema de primeira 

ordem:  

 

            (3.12)  

 

Onde:  

• �݉ – constante de primeira ordem do elemento de medida; 

• �݉ – constante de tempo de primeira ordem do elemento de 

medida; 

  ;variável de desvio da temperatura de saída medida – (ݏ)݉′ܶ •

 variável de desvio da temperatura a ser medida (entrada – (ݏ)′ܶ •

do sensor).  

Ao considerar que o controlador no estudo é um controlador proporcional-

integral-derivativo (PID), já foi definida sua FT na Equação 2.7:  
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           (3.13)  

 

De acordo com Coughanowr e Koppel (1978), a Equação 3.14 descreve a 

FT do elemento final de controle, que como também já foi mencionado, é um 

sistema de primeira ordem:  

 

          (3.14)  

 

Onde: �ݒ – constante de primeira ordem da válvula e �ݒ – constante de tempo 

de primeira ordem da válvula.  

Com todas as FT’s dos componentes demonstradas, um diagrama de blocos 

para representá-las é bem útil. Assim, fica mais fácil compreender a origem da FT 

global dada em Constantinides e Mostoufi (1999). A Figura 3.3 ilustra o diagrama:       
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Figura 3.3 – Diagrama de blocos de um sistema de realimentação em malha fechada 
 

 
 
Fonte: CARVALHO, 2014, p. 29 
 

A Figura 3.3 apresenta como os componentes de um sistema de controle 

realimentado interagem entre si. A resposta em malha fechada é descrita na 

Equação 3.15, conforme Stephanopoulos (1984), e equivale à Equação 2.9:  

 

 

 

Na Equação 3.15, segundo Stephanopoulos (1984), o primeiro termo 

representa o efeito sobre a variável controlada proveniente de um distúrbio no set 

point. Já o segundo termo representa o efeito sobre a variável controlada 

proveniente de um distúrbio na carga. Como no processo estudado o set point não 

é considerado um distúrbio, o termo �(ݏ)݌ݏ é nulo. Portanto, não há controle servo, 

apenas controle regulador. O controlador PID tem a função de compensar apenas 

a perturbação na carga (variação na temperatura de entrada) para retornar a 

temperatura de saída próxima ao valor de set point.  

Portanto, ao anular o primeiro termo da Equação 3.15, obtem-se:  
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São substituídas na Equação 3.16 as expressões que representam as FT’s 

dos componentes e a modelagem é finalizada:  �ሺ௦ሻௗሺ௦ሻ = భ��∗�+భ[ଵ+( ����∗�+భ)∗ቀ ����∗�+భቁ∗ቆ�௖∗(ଵ+ భ��∗௦+��∗௦)ቇ∗ቀ �೘�೘∗�+భቁ]            (3.17) 

 

Ao multiplicar o numerador e o denominador da Equação 3.17 por  � ∗ ݏ, 

obtem-se a Equação 3.18: 

  

 

 

Ao seguir o que é proposto por Constantinides e Mostoufi (1999), substitui-

se:         � = �ݒ�*݌*�݉*�c 

 

Ao desenvolver a Equação 3.18, é obtida a Equação 3.19, que desenvolvida 

novamente, gera a Equação 3.20:   

 

 

 

 

 

Ao cancelar alguns termos do numerador e do denominador, é obtida a FT 

global do problema proposto por Constantinides e Mostoufi (1999):  

 

  

 

O denominador da Equação 3.21 é igualado a zero, o que determina a 

equação característica. 
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Descreve-se o denominador da Equação 3.21 na sua forma polinomial, como 

na Equação 3.22:  

 + 3ݏ (ݒ�݉��� + ݒ�݌��� + ݒ�݉�݌���) + 4ݏ ݒ�݉�݌��� 

 (3.22)   0 = � + ݏ (��� + ��) + 2ݏ (݉��� + ݒ��� + ݌��� + ݀����)

 

Um parâmetro K na equação característica depende do ganho proporcional 

do controlador Kc.  

O valor crítico é o valor limite de Kc para que o sistema deixe de ser estável 

para se tornar instável. Matematicamente, é o valor limite entre os valores que 

geram raízes reais negativas e complexas com parte real negativa e valores que 

geram raízes reais positivas e complexas com parte real positiva. Para se calcular 

o valor crítico analiticamente, foi usado o critério de estabilidade de Routh.  

 

3.3 Teste de Estabilidade de Routh Aplicado 

   

Diferentes valores daqueles encontrados em Constantinides e Mostoufi 

(1999) para os parâmetros constantes da Equação 3.22 foram admitidos com o 

objetivo de garantir maior singularidade aos resultados dessa monografia, posto 

que os primeiros já foram utilizados na monografia de Carvalho (2014). 

Os parâmetros admitidos foram: 

• �� = ͻ,ͷ 

• �ௗ = ͳ,ͷ 

• �� = ͻ,ͷ 

• �௠ = Ͷ,ͺ 

• �௩ = ͷ,ʹ 

• � = ʹ,ͳ ∗ �ܿ 

Ao substituir os valores na FT global 3.21, obteve-se: 

 �ሺ௦ሻௗሺ௦ሻ = ଶଷ଻,ଵଶ ௦య+ଽହ ௦మ+ଽ,ହ ௦ ଶଶହଶ,଺ସ ௦ర+ଵଵଷଽ,଺ଶ ௦య+ሺଶଽ,ଽଶହ �௖+ଵ଼ହ,ଶହሻ ௦మ+ሺଵଽ,ଽହ �௖+ଽ,ହሻ ௦+ଶ,ଵ�௖     (3.23) 
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A fim de analisar a estabilidade pelo método analítico, foi considerado o 

denominador da Equação 3.23. As Equações 3.24, 3.25 e 3.26 tiveram que 

satisfazer o primeiro teste de Routh, em que todos os coeficientes da equação 

característica devem ser positivos. 

 ʹͻ,ͻʹͷ �ܿ + ͳͺͷ,ʹͷ > Ͳ    (3.24) ͳͻ,ͻͷ �ܿ + ͻ,ͷ > Ͳ      (3.25) ʹ,ͳ�ܿ > Ͳ     (3.26) 

 

Com o desenvolvimento teórico do arranjo de Routh apresentado na seção 

2.3.5 e o denominador da Equação 3.23, foi possível chegar ao ponto crítico do 

ganho proporcional pelo método analítico. A Tabela 3.1 demonstra o procedimento: 

 

Tabela 3.1 – Arranjo de Routh Aplicado 
 

Linhas Coeficientes   

1 ʹʹͷʹ,͸Ͷ 
 

ʹͻ,ͻʹͷ �ܿ+ ͳͺͷ,ʹͷ 
ʹ,ͳ�ܿ 

 

2 ͳͳ͵ͻ,͸ʹ 
 

ͳͻ,ͻͷ �ܿ + ͻ,ͷ 
 

Ͳ 

3 ͳ͸͸,Ͷ͹ʹ͵− ͻ,ͷͲͺʹ �ܿ 
 

ʹ,ͳ�ܿ 
 

Ͳ 

4 ܿͳ Ͳ 
 

Ͳ 
 

5 ʹ,ͳ�ܿ 
 

  

 
Fonte: O próprio autor 

 

Onde: 

 ܿͳ = ଵହ଼ଵ,ସ଼଺଼+଼ଷ଻,ହଽଶହ �௖−ଵ଼ଽ,଺଼଼଺ �௖మଵ଺଺,ସ଻ଶଷ−ଽ,ହ଴଼ଶ �௖   
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Conforme o critério de estabilidade, foi realizada a intersecção entre as 

Equações 3.24, 3.25 e 3.26 e o arranjo de Routh. Com isso, o intervalo de valores 

de Kc nos quais o sistema é estável em malha fechada foi encontrado: 

  Ͳ < �ܿ < ͷ,ͺͶʹ͸ 

 
Para valores maiores que 5,8426, o sistema é instável. O ganho crítico Kc = 

5,8426 foi, assim, obtido analiticamente. 

Nota-se que o critério usado não fornece mais detalhes do sistema, como os 

valores das raízes da equação característica, nem o grau de estabilidade. Apenas 

os valores de Kc para os quais o sistema é estável ou não (COUGHANOWR; 

KOPPEL, 1978).  

 Na próxima seção, o valor crítico foi encontrado com linguagem de 

programação do MATLAB, método proposto por Constantinides e Mostoufi (1999). 

 

3.4 Software de Programação  

  

O software utilizado para simular valores do Kc, encontrar as raízes da 

equação característica e definir o valor crítico foi o MATLAB® R2021a. O programa 

proporcionou ao usuário a chance de elaborar funções originais.  

No intuito de calcular as raízes de qualquer polinômio de grau n que tenha 

até um par de raízes complexas, foi utilizada a função NRsdivision.m de 

Constantinides e Mostoufi (1999), que executa o método Newton-Raphson com as 

divisões sintéticas. Ao pesquisar as raízes para certos valores de Kc, a lógica do 

método da bissecção foi introduzida para encontrar o valor crítico.  

Todo código de programação para executar esses métodos foi escrito na 

janela Editor, que confere a possibilidade de criar novos comandos e executá-los 

de uma só vez. As respostas para os comandos criados foram geradas na janela 

Command Window, que também foi usada para executar funções mais básicas a 

partir das entradas optadas pelo usuário. Para que essas novas funções pudessem 

ser executadas com sucesso, funções como While, For e If-Else, preexistentes no 

programa, foram usadas. 

While e For são funções de repetição, cujo objetivo de usá-las foi de gerar 

loops que produziram iterações. Critérios de tolerância foram escolhidos como 
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condições de parada. Estas funções foram necessárias tanto para a aproximação 

da raiz usando o método Newton-Raphson, como na geração de novos polinômios 

por meio das divisões sintéticas. No caso de poder executar afirmações 

verdadeiras ou falsas, foi utilizada a função If-Else, especialmente no método da 

bissecção. 

Outras funções pré-programadas também foram de extrema importância 

para realizar a simulação de estabilidade.   

 

3.4.1 MÉTODO DE NEWTON-RAPHSON COM DIVISÕES SINTÉTICAS 

  

O método de Newton-Raphson é a forma mais utilizada de localizar raízes 

de polinômios não-lineares. Nesse método, a estimativa das raízes se deve à 

aplicação da derivada da função, que é a reta tangente à curva em certo ponto. 

Emprega-se, então, a intersecção da derivada com o eixo cartesiano horizontal até 

se obter a maior aproximação com a raiz. Esse procedimento deve ser repetido 

para gerar iterações que são descritas genericamente na Equação 3.27, 

encontrada em Constantinides e Mostoufi (1999):  

  

       (3.27) 

 

A Figura 3.4 representa como as iterações ocorrem. A estimativa inicial é ݔ଴, ݂ (ݔ଴) é o valor da função em tal ponto, ݂′ (ݔ଴) é a derivada em tal ponto e ݔଵ é a 

intersecção da derivada com o eixo x. Assim, a estimativa para a próxima iteração 

é gerada.  
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Figura 3.4 – Análise gráfica do Método Newton-Raphson 
 

 
 
Fonte: RUGGIERO, M. A. G.; LOPES, V. L. R., 1997, p. 66 
  

Esse método é empregado apenas em polinômios que possuem ao máximo 

um par de raízes complexas. No entanto, a vantagem de utilizá-lo é devido ao fato 

de o usuário não precisar entrar com uma raiz estimada. Esta estimativa que seria 

uma aproximação, pode ser obtida, segundo Constantinides e Mostoufi (1999), pelo 

truncamento dos termos de menor potência do polinômio. Truncamento é o 

procedimento que considera as casas decimais desprezíveis em relação ao valor 

inteiro.      

Na Equação 3.28, de acordo com Constantinides e Mostoufi (1999), é 

considerado que as casas decimais são representadas pela soma dos termos da 

n-ésima e da (n-1) -ésima potência. Portanto, os termos a partir da (n-2) -ésima 

potência são truncados, o que torna a soma dos dois primeiros termos próximos de 

zero como mostrado na Equação 3.29. Assim se obtém a raiz inicial aproximada 

 .଴ሻ na Equação 3.30ݔ)

଴ܽ = (ݔ)݂  ∗ ௡ݔ + ܽଵ ∗ ௡−ଵݔ + ܽଶ ∗ ௡−ଶݔ + ⋯ + ܽ௡ = Ͳ      (3.28) 
 ܽ଴ ∗ ௡ݔ + ܽଵ ∗ ௡−ଵݔ ≈ Ͳ  (3.29) 
଴ݔ  ≈ − ௔భ௔బ                      (3.30) 

 

Deste modo, a partir da estimativa inicial, iterações baseadas na Equação 

3.27 são realizadas até a maior aproximação possível. É considerada uma 
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tolerância de aproximação até a sexta casa decimal (tol = 10^-6). Posto isso, a 

primeira raiz identificada é removida do polinômio de grau n através de divisões 

sintéticas. Desta forma, um polinômio de grau n-1 é gerado (CONSTANTINIDES; 

MOSTOUFI, 1999). 

A seguir, encontra-se parte de um exemplo de comando executado no 

MATLAB para realizar divisões sintéticas em loop até encontrar todas as raízes 

reais possíveis de um polinômio: 

 

 % Cálculo dos coeficientes do novo polinômio de grau n-1 após divisão 
sintética 
for r = 2:k 
b(r) = a(r) + b(r-1) * x1; 
end 

 

Onde:  

• k – vetor decrescente em passo -1 que começa no grau n e 

termina em 3, que é o último grau passível de divisão sintética;  

• r – vetor crescente em passo +1 que começa em 2 e termina 

em n; indica a posição dos coeficientes no polinômio.  

• b(r) – coeficientes do polinômio de grau n-1 onde r é sua 

posição no vetor; 

• b(r-1) – coeficientes do polinômio de grau n-1 onde r-1 é sua 

posição no vetor;  

• a(r) – coeficientes do polinômio de grau n onde r é sua posição 

no vetor; 

• x1 – raiz encontrada com o método de Newton-Raphson. 

As divisões sintéticas são executadas até o polinômio atingir o grau 2. O 

polinômio quadrático final é, desta forma, resolvido com o teorema de Bháskara 

(3.31), que geralmente resulta em um par de raízes complexas conjugadas:  

 

ݔ                                 = −௕±√௕మ−ସ௔௖      ଶ௔ = ߙ  ±  (3.31)        �ߚ

 

A programação para criar a função que executa o método de Newton-

Raphson com divisões sintéticas, conforme Constantinides e Mostoufi (1999), se 

encontra no Apêndice A. 
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3.4.2 MÉTODO DA BISSECÇÃO 

 

Conforme Chapra e Canale (2008), o método da bissecção, também 

denominado divisão do intervalo na metade, consiste em encontrar a raiz de uma 

função com base no fato desta se localizar em um intervalo onde o produto das 

funções dos extremos é negativo, o que indica uma mudança de sinal. O ponto 

médio desse intervalo é calculado e um novo intervalo é testado para a mudança 

de sinal com o ponto médio como novo extremo. 

Ao observar a primeira iteração na Figura 3.5, é constatado que ݂ሺͳʹሻ ∗݂ሺͳ͸ሻ < Ͳ, portanto a raiz se encontra no intervalo entre 12 e 16 devido à mudança 

de sinal da função. O ponto médio 14 é calculado e ݂ሺͳʹሻ ∗ ݂ሺͳͶሻ > Ͳ, o que 

constata que a raiz não está nesse intervalo. Portanto, a raiz está entre 14 e 16, 

posto que ݂ሺͳͶሻ ∗ ݂ሺͳ͸ሻ < Ͳ. O ponto médio 15 é calculado, e assim por diante, até 

que o produto seja nulo. É confirmado, portanto, que o último ponto médio é a raiz 

da função (CHAPRA; CANALE, 2008). 

 

Figura 3.5 – Descrição gráfica das três primeiras iterações para pesquisa de raízes pelo Método 
da Bissecção 
 

 
 
Fonte: CHAPRA; CANALE, 2008; p. 102
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3.4.2.1 Método de Bissecção Adaptado para o Caso Estudado 

 

Por meio de linguagem de programação no MATLAB, a lógica do método da 

bissecção foi utilizada para encontrar o valor crítico do Kc.  

Douglas (1972, apud CONSTANTINIDES e MOSTOUFI, 1999) propõe um 

modelo matemático para resolver o caso de um CSTR isotérmico controlado, cuja 

função transferência é conhecida e sua equação característica contém um Kc 

desconhecido que pode ser ajustado com a finalidade de gerar estabilidade ao 

sistema. A equação característica na sua forma canônica é formada por dois 

polinômios onde o de menor grau é multiplicado pelo ganho Kc.  

Constantinides e Mostoufi (1999) propõem um algoritmo que, para ser 

rodado, o usuário deve entrar com os coeficientes do menor e do maior polinômio 

que constituem a equação característica, e uma faixa de pesquisa para o Kc. Uma 

condição para que o programa rode é que o valor crítico de Kc deve estar entre os 

limites inferior e superior escolhidos. Esse fato ocorre quando Kc1 (limite inferior) 

gera uma equação que confere estabilidade ao sistema e Kc2 (limite superior), 

instabilidade, o que prova que o ponto crítico se encontra dentro desse intervalo. 

Para o programa retornar resultados quanto à aplicação do critério de 

estabilidade e determinar se o método da bissecção deve prosseguir entre os 

limites, foi criada a função binária “stbl”. A função é binária pois admite valor de 1 

para quando Kc gera estabilidade (todas raízes com parte real negativa) e valor de 

0 para quando Kc gera instabilidade (pelo menos uma raiz com parte real positiva). 

“Stbl1” e “stbl2” são funções auxiliadoras desse mecanismo. Ao considerar Kc1 e 

Kc2 iniciais, tem-se as proposições abaixo: 

݈ܾݐݏ  = {Ͳ, ,ͳ݈݁ݒáݐݏ݊� ܽ݉݁ݐݏ�ݏ  ݈݁ݒáݐݏ݁ ܽ݉݁ݐݏ�ݏ   (3.32) 

 ݂ሺ�ܿͳሻ = ͳ ݁ ݂ሺ�ܿʹሻ݈ܾݐݏ =  (3.33)   ʹ݈ܾݐݏ

 ܵ݁ ݂ሺ�ܿͳሻ = ݂ሺ�ܿʹሻ, ͳ݈ܾݐݏ = ,ʹ݈ܾݐݏ  ݋݈ܽݒݎ݁ݐ݊� ݋݊ ܽݎݐ݊݋ܿ݊݁ ݁ݏ ݋ã݊ ݋ܿ�ݐíݎܿ ݎ݋݈ܽݒ

(3.34) 
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ܵ݁ ݂ሺ�ܿͳሻ ≠ ݂ሺ�ܿʹሻ, ͳ݈ܾݐݏ ≠ ,ʹ݈ܾݐݏ ݉éܽݑ݊�ݐ݊݋ܿ ݋݀݋ݐ ݁ �ܿ = �ܿͳ + �ܿʹʹ  

(3.35) 

 ܵ݁ ݂ሺ�ܿሻ = ݂ሺ�ܿͳሻ, ݈ܾݐݏ = ,ͳ݈ܾݐݏ �ܿ′ͳ = �ܿ ݁ �ܿ′ʹ = �ܿʹ, ′ܿ� ݋ݐ݊ܽݐݎ݋݌ = �ܿ + �ܿʹʹ  

(3.36) 

 ܵ݁ ݂ሺ�ܿሻ = ݂ሺ�ܿʹሻ, ݈ܾݐݏ = ,ʹ݈ܾݐݏ �ܿ′ͳ = �ܿͳ ݁ �ܿ′ʹ = �ܿ, ′ܿ� ݋ݐ݊ܽݐݎ݋݌ = �ܿͳ + �ܿʹ  

(3.37) 

 

O método encontra o valor final de Kc (ponto crítico) quando o critério de 

convergência proposto pelo usuário for satisfeito (CONSTANTINIDES; MOSTOUFI, 

1999). 

 ∆�ܿ = |�ܿͳ − �ܿʹ|                          (3.38) 

 

A escolha certa da faixa de pesquisa é imprescindível para a viabilidade do 

método. Dependendo dos limites selecionados, o programa pode não rodar. No 

caso do trabalho acadêmico desenvolvido por Salvarani (2015) - que discutiu sobre 

o controle proporcional em CSTR’s isotérmicos - o autor fez uso da programação 

encontrada em literatura sem nenhuma modificação.  

Salvarani (2015) optou por um extremo inferior Kc1 = 0, condição de malha 

aberta, e um extremo superior Kc2 = 100, ao saber que o ponto crítico obtido 

analiticamente foi de 75,1584. As raízes para cada Kc inicial foram calculadas e 

constatou-se que Kc1 gerou raízes exclusivamente negativas e Kc2, raízes 

complexas conjugadas com parte real positiva (CONSTANTINIDES e MOSTOUFI, 

1999). Portanto houve uma mudança de sinais nas raízes, o que representa a 

presença do valor crítico no intervalo. Posto isso, o mesmo intervalo foi bi 

seccionado e Kc = 50 (ponto médio) admitido como novo extremo. Kc1 = 50 gerou 

todas suas raízes com parte real negativa, o que levou o programa a substituir Kc1 

= 0 por Kc1 = 50 e bi seccionar o intervalo entre 50 e 100 (stbl1 = 1 e stbl2 = 0). 

Esse procedimento foi repetido 19 vezes até o módulo da diferença entre os dois 

extremos atingir o critério de convergência de 10^-3, proposto em literatura. 
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Portanto, Salvarani (2015) obteve sucesso no cálculo do Kc crítico ao usar 

diretamente os comandos encontrados na literatura. Não foi o caso desta 

monografia, que demandou alguns ajustes a fim de viabilizar a execução do 

programa. 

Os primeiros parâmetros testados para calcular os coeficientes de entrada 

da equação característica foram fornecidos por Constantinides e Mostoufi (1999) e 

o ganho crítico obtido analiticamente para esses parâmetros foi de 3,9179. O 

método de Routh para esse cálculo foi descrito por Carvalho (2014). A partir desses 

dados, foram geradas as raízes para Kc1 = 0 e Kc2 = 5, mas o programa para, sem 

produzir mais iterações. O que ocorreu foi que, para Kc1 = 0, as raízes reais foram 

-0,2, -0,2, -0,1 e 3,6*10^-12. Para o algoritmo, a última raiz citada é positiva (stbl1 

= 0), assim como em Kc = 5 (stbl2 = 0), que gerou raízes -0,40341, -0,1131, 

0,008255 + 0,2808i e 0,008255 – 0,2808i. Logo, retornou que o valor crítico não se 

encontrava naquele intervalo. A afirmação é falsa, posto que o fato já tinha sido 

constatado com o método de Routh. 

Existem alguns valores no MATLAB chamados “floating-numbers”, que não 

conseguem ser armazenados na forma binária. Isso pode ter sido uma das causas 

para que esse valor positivo infinitamente pequeno fosse gerado como raiz em Kc 

= 0 (MOLER, 1996). Portanto, foi aplicada a função Round no intuito de arredondar 

3,6*10^-12 a zero. Mesmo ao eliminar o valor positivo, o zero também se tornou um 

empecilho, pois o algoritmo estava programado para retornar como estável 

somente Kc’s que gerassem raízes com parte real negativa. Nesse caso, havia uma 

parte real nula. 

Ao considerar a definição de erro apresentada na seção 2.2 e o tipo de 

processo proposto, como explanado na seção 2.2.4, houve a alternativa de optar 

por um Kc1 maior que 0, como 0,0001, com a justificativa de Kc ser positivo para o 

controle de ação reversa. 

No entanto, foi decidido analisar a estabilidade usando como limite inferior 

de pesquisa a malha aberta (Kc1 = 0), como descrito em Constantinides e Mostoufi 

(1999). Constatou-se que a raiz zero não é um polo, conforme a seção 2.3.3. 

Quando Kc = 0, a função transferência assume esta configuração: 

 �ሺݏሻ = ଶହ଴ ௦య+ଵ଴଴ ௦మ+ଵ଴௦ଶହ଴଴ ௦ర+ଵଶହ଴ ௦య+ଶ଴଴ ௦మ+ଵ଴ ௦   (3.39) 
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Ao considerar que s = 0 é raiz do denominador, isto supõe que também seja 

polo da função transferência. Mas para que uma raiz seja polo, �ሺݏሻ → ∞, o que 

não ocorre. Ao substituir s por zero em toda função, tem-se uma indeterminação 

algébrica �ሺݏሻ = ଴଴  . Para resolvê-la, foi aplicada a regra de L’Hôpital, como 

proposto por Chen (1993), para resolver limites indeterminados: 

 �ሺݏሻ = ݈�݉௦→଴ �ሺ௦ሻ஽ሺ௦ሻ = ݈�݉௦→଴ �′ሺ௦ሻ஽′ሺ௦ሻ = ͳ    (3.40) 

 

A convergência para o valor de 1 só comprovou que 0 não é um polo para a 

Equação 3.36. Desse modo, Kc1 = 0 só apresentou polo negativo, logo o sistema 

em malha aberta é estável. 

Tendo em vista que, na prática, a raiz zero da primeira iteração não tem 

efeito sobre a estabilidade, a estrutura de programação foi adaptada para que esse 

detalhe não afetasse a execução dos comandos. A parte real nula da raiz foi 

incluída como condição de estabilidade. Na prática, isso não é fato, como se pode 

conferir nos critérios de estabilidade descritos na seção 2.3.4. A inclusão dessa 

nova condição teve apenas a finalidade de viabilizar novas iterações.  

O mesmo procedimento foi realizado para a equação característica definida 

na Equação 3.23, cujo resultado foi demonstrado no tópico 4 Resultados e 

Discussão. 

Os comandos que executam as etapas dessa seção, adaptados de 

Constantinides e Mostoufi (1999), se encontram no Apêndice B. 

  

3.4.3 SIMULAÇÃO PARA DIFERENTES VALORES DO GANHO PROPORCIONAL 

 

Depois de identificar o valor crítico, esse serviu como parâmetro para 

escolher mais dois valores de Kc a serem simulados para a análise de estabilidade 

do sistema. Para a região de estabilidade, considerou-se Kc = 3 e para a região de 

instabilidade, Kc = 10, já que o Kc crítico obtido foi de 5,8426. 

Ao atribuir esses valores à Equação 3.23, foram obtidas três FT’s: 

 �ሺݏሻ = �ሺ௦ሻௗሺ௦ሻ = ଶଷ଻,ଵଶ ௦య+ଽହ ௦మ+ଽ,ହ ௦ ଶଶହଶ,଺ସ ௦ర+ଵଵଷଽ,଺ଶ ௦య+ଶ଻ହ,଴ଶହ ௦మ+଺ଽ,ଷହ ௦+଺,ଷ , �ܿ = ͵       (3.41) 
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�ሺݏሻ = �ሺ௦ሻௗሺ௦ሻ = ଶଷ଻,ଵଶ ௦య+ଽହ ௦మ+ଽ,ହ ௦ ଶଶହଶ,଺ସ ௦ర+ଵଵଷଽ,଺ଶ ௦య+ଷ଺଴,଴଼ଽ଼ ௦మ+ଵଶ଺,଴ହଽ଼ ௦+ଵଶ,ଶ଺ଽହ , �ܿ = ͷ,ͺͶʹ͸   (3.42) 

 �ሺݏሻ = �ሺ௦ሻௗሺ௦ሻ = ଶଷ଻,ଵଶ ௦య+ଽହ ௦మ+ଽ,ହ ௦ ଶଶହଶ,଺ସ ௦ర+ଵଵଷଽ,଺ଶ ௦య+ସ଼ସ,ହ ௦మ+ଶ଴ଽ ௦+ଶଵ  , �ܿ = ͳͲ           (3.43) 

 

As simulações foram feitas para perturbações na entrada do tipo impulso e 

degrau unitários. Portanto, foram necessárias suas TL’s, que podem ser 

encontradas na Tabela A-1 de Ogata (2011). Constatou-se que: 

,݋�ݎáݐ�݊ݑ ݋ݏ݈ݑ݌݉� ݋ ܽݎܽܲ  ℒ[�ሺݐሻ] = ͳ (3.44) 

,݋�ݎáݐ�݊ݑ ݑܽݎ݃݁݀ ݋ ܽݎܽܲ  ℒ[ͳሺݐሻ] = ͳ/(3.45) ݏ 

 

A fim de compreender melhor a álgebra por trás dessas transformadas, os 

cálculos se encontram em Smith e Corripio (2008). Deste modo, �ሺݏሻ = �ሺݏሻ ∗ ݀ሺݏሻ, 

onde ݀ሺݏሻ = ͳ para a perturbação em impulso unitário na entrada e ݀ሺݏሻ = ͳ/ݏ, 

para o degrau unitário. 

A expansão em frações parciais de �ሺݏሻ foi feita com o auxílio da função 

Residue no MATLAB. Residue apresenta uma configuração específica que solicita 

a entrada do numerador e do denominador da função transferência a fim de ter 

como saída as raízes (“p”), os coeficientes das variáveis (“C”) e uma constante “K”, 

que pode ser nula ou não. [C, p, K] = residue (num den); onde “num” é o vetor dos 

coeficientes do numerador da função transferência e “den”, do denominador. 

A partir desses dados, foi possível calcular a transformada inversa de �ሺݏሻ e 

se obteve o comportamento dinâmico da resposta no domínio do tempo ݕሺݐሻ. 
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4 RESULTADOS E DISCUSSÃO 

 

O procedimento mencionado na seção 3.4.2.1 foi realizado com os 

parâmetros admitidos para esta monografia. Entrou-se com os coeficientes que 

constituem a equação característica, a faixa de pesquisa para Kc de 0 a 10 e o 

método de pesquisa de raízes Newton-Raphson com divisões sintéticas. 

O valor crítico foi encontrado quando o critério de convergência de 10^-5 foi 

atingido, após 22 iterações. O algoritmo calculou 5,841932 para o maior valor de 

Kc que gera estabilidade e 5,841942 para o menor que gera instabilidade. Deste 

modo, o valor crítico está nesse intervalo-limite. O resultado gerado na Command 

Window é ilustrado na Figura 4.1: 



47  

Figura 4.1 – Resultado do algoritmo programado para pesquisar o valor crítico de Kc 
 

 
 
Fonte: O próprio autor 
 

Em sequência, foram realizadas as simulações para os três casos das 

Equações 3.41, 3.42 e 3.43.  

Para a perturbação degrau, como ݀ሺݏሻ = ͳ/ݏ, um novo fator foi gerado no 

denominador, pois foi adicionada uma raiz igual a zero. Portanto o vetor do 

denominador ganhou uma posição a mais, que foi preenchida por um zero. Para a 

perturbação impulso, como ݀ሺݏሻ = ͳ, essa condição algébrica não foi considerada, 

logo não houve alterações no vetor do denominador. 

As Tabelas 4.1 e 4.2 representam as saídas da função Residue para cada 

Kc sob perturbações impulso e degrau:
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Tabela 4.1 - Saídas da função Residue para diferentes Kc sob perturbação impulso 
 

Impulso 

Kc Coeficientes Raízes Constante 

3 

0,0205 
 

0,0444 + 0,0065i 
 

0,0444 – 0,0065i 
 

-0,0040 
 

-0,3422 
 

-0,0158 + 0,2483i 
 

  -0,0158 – 0,2483i 
 

  -0,1320 
 

K=0 

5,8426 

0,0196 
 

  0,0439 + 0,0061i 
 

   0,0439 – 0,0061i 
 

  -0,0021 
 

-0,3744 
 

   0 + 0,3326i 
 

   0 – 0,3326i 
 

  -0,1315 
 
 

K=0 

10 

0,0442 + 0,0061i 
 

   0,0442 – 0,0061i 
 

   0,0181 
 

  -0,0012 
 

0,0135 + 0,4202i 
 

   0,0135 – 0,4202i 
 

  -0,4017 
 

  -0,1313 
 

K=0 

 
Fonte: O próprio autor  
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Tabela 4.2 - Saídas da função Residue para diferentes Kc sob perturbação degrau 
 

Degrau 

Kc Coeficientes Raízes Constante 

3 

-0,0598 
 

   0,0146 – 0,1799i 
 

  0,0146 + 0,1799i 
 

   0,0307 
  

   0 
 

-0,3422  
 

  -0,0158 + 0,2483i 
 

  -0,0158 – 0,2483i 
 

  -0,1320  
 

   0 
 

K=0 

5,8426 

-0,0523 
 

   0,0182 - 0.1320i 
 

  0,0182 + 0.1320i 
 

   0,0158 
  

   0 
 

-0,3744  
 

  0 + 0,3326i 
 

   0 – 0,3326i 
 

  -0,1315 
  

   0 
 

K=0 

10 

0,0179 – 0,1045i 
 

  0,0179 + 0,1045i 
 

  -0,0452 
  

   0,0093  
 

   0 
 

   0,0135 + 0,4202i 
 

   0,0135 – 0,4202i 
 

  -0,4017 
  

  -0,1313 
  

   0 
 

K=0 

 
Fonte: O próprio autor 
 

A partir dos dados oriundos das Tabelas 4.1 e 4.2, frações parciais foram 

estruturadas para o cálculo das TLI’s com o fim de analisar o comportamento 

dinâmico da resposta no domínio do tempo.  

Os comandos criados para gerar os dados das Tabelas 4.1 e 4.2 se 

encontram no Apêndice C. 
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As equações a seguir representam as respostas do sistema após a 

transformada inversa em �ሺݏሻ: 

 

• Kc = 3, perturbação impulso (1) e degrau (2): 

ሻݐଵሺݕ  = Ͳ,ͲʹͲͷ݁−଴,ଷସଶଶ௧ − Ͳ,ͲͲͶ݁−଴,ଵଷଶ଴௧ + ʹ݁−଴,଴ଵହ଼௧[Ͳ.ͲͶͶͶ cosሺͲ,ʹͶͺ͵ݐሻ − Ͳ.ͲͲ͸ͷ݊݁ݏሺͲ,ʹͶͺ͵ݐሻ]
 (4.1) 

ሻݐଶሺݕ  = −Ͳ,Ͳͷͻͺ݁−଴,ଷସଶଶ௧ + Ͳ,Ͳ͵Ͳ͹݁−଴,ଵଷଶ଴௧ + ʹ݁−଴,଴ଵହ଼௧[Ͳ,ͲͳͶ͸ cosሺͲ,ʹͶͺ͵ݐሻ + Ͳ,ͳ͹ͻͻ݊݁ݏሺͲ,ʹͶͺ͵ݐሻ]
 (4.2) 

 

• Kc = 5,8426 (crítico), perturbação impulso (3) e degrau (4): 

ሻݐଷሺݕ  = Ͳ,Ͳͳͻ͸݁−଴,ଷ଻ସସ௧ − Ͳ,ͲͲʹͳ݁−଴,ଵଷଵହ௧ + ʹ[Ͳ,ͲͶ͵ͻ cosሺͲ,͵͵ʹ͸ݐሻ − Ͳ,ͲͲ͸ͳ݊݁ݏሺͲ,͵͵ʹ͸ݐሻ]
 (4.3) 

ሻݐସሺݕ  = −Ͳ,Ͳͷʹ͵݁−଴,ଷ଻ସସ௧ + Ͳ,Ͳͳͷͺ݁−଴,ଵଷଵହ௧ + ʹ[Ͳ,Ͳͳͺʹ cosሺͲ,͵͵ʹ͸ݐሻ + Ͳ,ͳ͵ʹͲ݊݁ݏሺͲ,͵͵ʹ͸ݐሻ]
 (4.4) 

 

• Kc = 10, perturbação impulso (5) e degrau (6): 

ሻݐହሺݕ  = Ͳ,Ͳͳͺͳ݁−଴,ସ଴ଵ଻௧ − Ͳ,Ͳͳʹ݁−଴,ଵଷଵଷ௧ + ʹ݁଴,଴ଵଷହ௧[Ͳ,ͲͶͶʹ cosሺͲ,ͶʹͲʹݐሻ − Ͳ,ͲͲ͸ͳ݊݁ݏሺͲ,ͶʹͲʹݐሻ]
 (4.5)       

ሻݐ଺ሺݕ  = −Ͳ,ͲͶͷʹ݁−଴,ସ଴ଵ଻௧ + Ͳ,ͲͲͻ͵݁−଴,ଵଷଵଷ௧ + ʹ݁଴,଴ଵଷହ௧[Ͳ,Ͳͳ͹ͻ cosሺͲ,ͶʹͲʹݐሻ + Ͳ,ͳͲͶͷ݊݁ݏሺͲ,ͶʹͲʹݐሻ]
 (4.6) 

 

A partir das equações acima, pôde-se plotar os gráficos que foram utilizados 

para simular e analisar a estabilidade do sistema. Os comandos criados para gerar 

esses gráficos estão descritos no Apêndice D. 

As Figuras 4.2 e 4.3 representam o comportamento dinâmico da resposta 

para as Equações 4.1 e 4.2, respectivamente: 
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Figura 4.2 - Gráfico da resposta ao impulso para Kc = 3  
 

 
 
Fonte: O próprio autor 
 

Figura 4.3 - Gráfico da resposta ao degrau para Kc = 3 
 

 
 
Fonte: O próprio autor 
  

Com o objetivo de interpretar e compreender a condição do sistema em 

determinadas circunstâncias, foi necessário conceituar a amplitude observada no 

eixo y dos gráficos acima. Tendo em vista que ݕሺݐሻ, na realidade, não é a variável 

controlada, e sim a variável-desvio dessa, entende-se como módulo da amplitude 
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o afastamento da variável controlada em relação ao seu valor no regime 

estacionário (set point). Portanto, quando a amplitude for zero, significa que o 

desvio é nulo e a variável se encontra em estado estacionário no valor de set point. 

Em contrapartida, quando a amplitude for positiva ou negativa (módulo diferente de 

zero), ocorreu o afastamento da variável em relação ao set point, o que implica em 

um desvio.  

Os gráficos acima mostram que, com o ganho proporcional ajustado em Kc 

= 3, as respostas para ambas perturbações tiveram comportamento oscilatório e 

essas oscilações foram amortecidas ao longo do tempo até a resposta convergir ao 

estado estacionário e ter o desvio eliminado. Isso se deu devido aos polos reais 

negativos e complexos com parte real negativa. O sistema é estável. 

Nos casos ilustrados nas Figuras 4.4 e 4.5, com o Kc ajustado no ponto 

crítico, foi observado como as respostas para ambas perturbações tiveram 

comportamento oscilatório com amplitude constante ao longo do tempo. O desvio 

permaneceu e a variável controlada não retornou ao set point. Isso se deu devido 

aos polos imaginários puros obtidos juntamente com polos reais negativos. O 

sistema é criticamente estável. 
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Figura 4.4 - Gráfico da resposta ao impulso para Kc crítico 5,8426 
 

 
 
Fonte: O próprio autor  
 

Figura 4.5 – Gráfico da resposta ao degrau para Kc crítico 5,8426 
 

 
 

Fonte: O próprio autor  
 

Nos gráficos das Figuras 4.6 e 4.7, foi observado que, com o ganho 

proporcional ajustado em Kc = 10, as respostas para ambas perturbações tiveram 

comportamento oscilatório com amplitude crescente ao longo do tempo, o que torna 

o desvio impossível de ser eliminado. Isso se deu devido aos polos complexos 

conjugados que apresentaram parte real positiva. O sistema é instável. 
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Figura 4.6 - Gráfico da resposta ao impulso para Kc = 10  
 

 
 
Fonte: O próprio autor  
 

Figura 4.7 - Gráfico da resposta ao degrau 
  

 
 
Fonte: O próprio autor  
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5 CONCLUSÃO 

 

Esse trabalho foi relevante por demonstrar dois meios de analisar a 

estabilidade de um sistema de controle: por métodos numéricos e pelo método 

analítico de Routh. 

No método analítico, a análise foi feita pela localização das raízes sem o 

conhecimento de seus valores. A sua localização foi conhecida por meio de testes 

algébricos. A importância do seu emprego se deve ao fato de não exigir a 

determinação das raízes para análise. 

Quanto aos métodos numéricos, o MATLAB se mostrou uma ferramenta útil 

por executá-los por meio de um algoritmo. A análise através desse algoritmo foi 

realizada pelo cálculo das raízes da equação característica e a avaliação quanto à 

sua posição no plano complexo. O software também proporcionou a geração de 

gráficos que, visualizados, pôde-se concluir em qual condição de estabilidade 

simulada o controle PID teve melhor desempenho. 

No processo proposto, como o controle PID tem a finalidade de retornar a 

variável controlada ao valor de set point, o ajuste do ganho proporcional que 

mostrou um melhor desempenho dentre as três opções simuladas foi o Kc = 3, onde 

o sistema é estável. Portanto, o controle nesse ajuste foi mais eficaz. 

Já, para os outros ajustes, o controle não cumpriu sua finalidade. O ajuste 

no ganho crítico 5,8426 pode ser plausível para outros exemplos, mas no caso 

estudado, não foi aceito, pois o desvio em relação ao set point permaneceu 

constante ao longo do tempo. Quanto ao ajuste em Kc = 10, esse foi totalmente 

descartado pelo fato de o sistema ser instável, o que torna o controle ineficaz. 
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APÊNDICE A – Programação para criar a função NRsdivision que executa o 

método de Newton-Raphson com divisões sintéticas 

 
function x = NRsdivision(c,tol) % função de Newton-Raphson criada  
if nargin < 2 || isempty(tol) % isenta o usuário de entrar com uma tolerância 
tol = 10^-6; 
end 
if tol == 0 
tol = 10^-6; % convergência máxima para encontrar a raiz inicial 
end 
 
n = length(c)-1; % grau do polinômio a ser decomposto 
a = c; % o vetor dos coeficientes do polinômio de grau n  
 
for k = n:-1:3 % polinômios são passíveis de divisão sintética até n=3  
x0= -a(2)/a(1); % estimativa inicial considerando truncamento das menores 
potências 
x1 = x0 + 0.1; % atribui valor inicial a raiz 
iter = 0; % contagem das iterações 
maxiter = 100; % máxima iteração possível 
 
% Resolução pelo Método de Newton Raphson 
while abs(x0 - x1) > tol && iter < maxiter % condições de parada 
iter = iter + 1; 
x0 = x1; 
fnk = polyval(a,x0); % valor da função para a estimativa inicial 
fnkp = polyval(polyder(a),x0); % valor da derivada da função para a estimativa 
inicial 
if fnkp ~= 0  
x1 = x0 - fnk/fnkp; % aproximação seguinte 
else  
x1 = x0 + 0.01; % valor alternativo que retorna, caso a derivada seja nula 
end 
end 
x(n-k+1) = x1; % primeira raíz real obtida por divisão sintética 
% Cálculo dos coeficientes do polinômio de grau n-1 a partir da remoção 
% de x1 
b(1) = a(1); 
for r = 2:k 
b(r) = a(r) + b(r-1)*x1; 
end 
if iter == maxiter 
disp ('Aviso: Maior Iteração Atingida!') 
end 
 
clear a 
a = b;  
clear b  
end 
% cálculo das raizes da função quadrática final, geralmente pares conjugados 
complexos 
delta = a(2)^2 - 4*a(1)*a(3); 
x(n-1)= (-a(2) - sqrt(delta))/(2*(a(1))); 
x(n)= (-a(2) + sqrt(delta))/(2*(a(1))); 
x=x'; % expôe as raizes na horizontal
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APÊNDICE B – Programação para pesquisa do ponto crítico pelo Método da 

Bissecção 

 

clear 
clc 
% Entrada dos coeficientes da equação característica 
num = input ('coef. menor polinomio = '); 
denom = input('coef. maior polinomio = '); 
disp('') 
% Entrada dos limites de pesquisa para Kc 
Kc1 = input('Limite inferior da faixa de pesquisa= '); 
Kc2 = input('Limite superior da faixa de pesquisa= '); 
disp('') 
disp(' 1) Newton-Raphson com divisão sintética') 
method = input('Entre com 1 para o Método para Encontrar Raízes de NR = '); 
 
iter = 0; 
n1= length(num); % comprimento do vetor dos coef. menor polinômio 
n2= length(denom); % comprimento do vetor dos coef. maior polinômio 
c(1:n2-n1) = denom(1:n2-n1); 
 
% Loop para encontrar Kc crítico 
while abs(Kc1 - Kc2) > 10^-5 % critério de convergência 
iter = iter +1; 
if iter == 1 % primeira iteração 
Kc = Kc1; % Limite inferior 
elseif iter == 2 % segunda iteração 
Kc = Kc2; % Limite superior 
else 
Kc = (Kc1 + Kc2)/2; % Aproximação seguinte (NOVO Kc) 
end 
 
% Cálculo dos coef. da equação na forma canônica 
for m= n2-n1+1 : n2 
c(m)= denom(m) + Kc*num(m-n2+n1); 
end 
 
% Encontrar Raízes 
switch method % insere o metodo a ser utilizado 
case 1 % Newton Raphson com divisões sintéticas 
root = NRsdivision(c); 
case 2 % Método do Autovalor  
root = roots(c); 
end 
 
fprintf('\n Kc = %8.6f\n Roots = ',Kc) % saída dos valores de Kc 
for k = 1:length(root) 
if isreal(root(k)) % caso as raizes sejam reais 
if root(k) > 0 && root(k) < 1e-6 %arredondamento da raiz infinitamente pequena a 
0 
% no caso da malha aberta (Kc=0) a fim de viabilizar a rodagem dos códigos     
root(k) = round(root(k)); 
else 
root(k) = root(k); 
end 
 
realpart = real(root); % parte real das raízes 
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imagpart = imag(root); % parte imaginária das raizes 
 
fprintf('%7.5g ',(root(k))) % saída das raizes calculadas para cada Kc 
else   
fprintf('%6.4g',realpart(k))  
if imagpart(k) >= 0 
fprintf('+%5.4gi ',imagpart(k)) 
else 
fprintf('-%5.4gi ',abs(imagpart(k))) 
end 
end 
end 
disp('') 
% Condição de Estabilidade do Sistema que Determina Quando o Programa Deve Cessar 
stbl=0; % função binária de reconhecimento da estabilidade 
for m = 1: length(root) 
if realpart(m)<= 0 % caso a parte real seja negativa; a condição de ser nula 
% parte do fato que o programa se inicia com uma condição de malha aberta e a 
raiz=0 
% não é polo 
stbl = 1; % caso a afirmação seja verdadeira, sistema estável 
else % caso a afirmação seja falsa  
stbl = 0; %sistema instável 
break; 
end 
end 
 
if iter == 1 
    stbl1 = stbl; % valor de stbl para o Kc1 inicial 
elseif iter == 2 
    stbl2 = stbl; % valor de stbl para Kc2 inicial 
    if stbl1 == stbl2 % caso os valores sejam iguais 
    error('Valor critico esta fora do intervalo escolhido.'); %erro 
    end 
else 
if stbl == stbl1 % caso o stbl de Kc1 seja igual ao do novo Kc 
    Kc1 = Kc; % o novo Kc se torna o novo limite inferior 
else % caso o stbl de Kc2 seja igual ao novo Kc 
    Kc2 = Kc; % o novo Kc se torna o novo limite superior 
end 
end 
end 
% saída do valor crítico de Kc, encontrado ao atingir a convergência máxima 
fprintf('\n O valor crítico de Kc')   
fprintf('\n se encontra no intervalo entre')   
fprintf('\n Kc1= %8.6f e Kc2 = %8.6f', Kc1, Kc2')
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APÊNDICE C – Expansão em frações parciais com a função Residue para 

diferentes valores de Kc sob perturbação impulso e degrau 

 

% Expansão em frações parciais para o impulso 
num=[237.12 95 9.5 0]; 
Kc=input('Entre com 3 valores de Kc:'); 
for r=1:3 
den=[2252.64 1139.62 29.925*Kc(r)+185.25 19.95*Kc(r)+9.5 2.1*Kc(r)]; 
printsys(num,den,'s') 
[C,p,K]=residue(num,den) 
end 
 
% Expansão em frações parciais para o degrau 
num=[237.12 95 9.5 0]; 
Kc=input('Entre com 3 valores de Kc:'); 
for r=1:3 
den=[2252.64 1139.62 29.925*Kc(r)+185.25 19.95*Kc(r)+9.5 2.1*Kc(r) 0]; 
printsys(num,den,'s') 
[C,p,K]=residue(num,den) 
end 
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APÊNDICE D – Programação para geração de gráficos do comportamento 

dinâmico da resposta para diferentes valores de Kc sob perturbações 

impulso e degrau 

 

% Gráfico da resposta para Kc=3, perturbação impulso 
t=0:0.001:500; 
a=0.0205*exp(-0.3422*t); 
b=-0.004*exp(-0.1320*t); 
c=((2*exp(-0.0158*t)).*(0.0444*cos(0.2483*t)-0.0065*sin(0.2483*t))); 
y1=a+b+c; 
plot(t,y1) 
grid on 
xlabel('Tempo (segundos)') 
ylabel('Amplitude') 
title('Comportamento da resposta ao impulso para Kc=3') 
 
% Gráfico da resposta para Kc=3, perturbação degrau 
t=0:0.001:500; 
a=-0.0598*exp(-0.3422*t); 
b=0.0307*exp(-0.1320*t); 
c=((2*exp(-0.0158*t)).*(0.0146*cos(0.2483*t)+0.1799*sin(0.2483*t))); 
y2=a+b+c; 
plot(t,y2) 
grid on 
xlabel('Tempo (segundos)') 
ylabel('Amplitude') 
title('Comportamento da resposta ao degrau para Kc=3') 
 
% Gráfico da resposta para Kc=5.8426 (crítico), perturbação impulso 
t=0:0.001:500; 
a=0.0196*exp(-0.3744*t); 
b=-0.0021*exp(-0.1315*t); 
c=2*(0.0439*cos(0.3326*t)-0.0061*sin(0.3326*t)); 
y3=a+b+c; 
plot(t,y3) 
grid on 
xlabel('Tempo (segundos)') 
ylabel('Amplitude') 
title('Comportamento da resposta ao impulso para Kc=5.8426') 
 
% Gráfico da resposta para Kc=5.8426 (crítico), perturbação degrau 
t=0:0.001:500; 
a=-0.0523*exp(-0.3744*t); 
b=0.0158*exp(-0.1315*t); 
c=2*(0.0182*cos(0.3326*t)+0.1320*sin(0.3326*t)); 
y4=a+b+c; 
plot(t,y4) 
grid on 
xlabel('Tempo (segundos)') 
ylabel('Amplitude') 
title('Comportamento da resposta ao degrau para Kc=5.8426') 
 
% Gráfico da resposta para Kc=10, perturbação impulso 
t=0:0.001:500; 
a=0.0181*exp(-0.4017*t); 
b=-0.012*exp(-0.1313*t); 
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c=((2*exp(0.0135*t)).*(0.0442*cos(0.4202*t)-0.0061*sin(0.4202*t))); 
y5=a+b+c; 
plot(t,y5) 
grid on 
xlabel('Tempo (segundos)') 
ylabel('Amplitude') 
title('Comportamento da resposta ao impulso para Kc=10') 
 
% Gráfico da resposta para Kc=10, perturbação degrau 
t=0:0.001:500; 
a=-0.0452*exp(-0.4017*t); 
b=0.0093*exp(-0.1313*t); 
c=((2*exp(0.0135*t)).*(0.0179*cos(0.4202*t)+0.1045*sin(0.4202*t))); 
y6=a+b+c; 
plot(t,y6) 
grid on 
xlabel('Tempo (segundos)') 
ylabel('Amplitude') 
title('Comportamento da resposta ao degrau para Kc=10') 
 
 
 
 
 
 
 
 
 
 

 

 

  

 

 

 

 

 

 
 
 
  
  

  

  

  

  


