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RESUMO

JOHNSON, J. R. Simulacao da estabilidade de um sistema de controle em um
tanque de aquecimento com agitacao sob acao PID. 2021. 63 f. Monografia
(Trabalho de Conclusao de Curso em Engenharia Quimica) — Escola de Engenharia
de Lorena, Universidade de Sao Paulo, Lorena, 2021.

O controle de processos é essencial ao projeto de uma planta quimica por
compensar eventuais desvios das variaveis de processo que devem se manter em
valores especificados. A fim de argumentar sobre o carater imprescindivel do
controle, esta monografia apresentou como exemplo de processo um tanque de
aquecimento com agitacdo continua. O produto na saida corre o risco de néo
garantir uma composi¢cao uniforme ao se decompor em altas temperaturas ou se
tornar uma mistura incompleta, em baixas temperaturas. Por isso, € essencial que
esse processo tenha uma malha de controle de temperatura. O tanque € alimentado
com um fluido que, agitado sob certa temperatura, a propriedade pretendida pelo
projeto é alcancada. O processo € controlado por um controlador proporcional-
integral-derivativo (PID), cuja variavel controlada € a temperatura de saida. Essa
deve ser mantida em um valor desejado de projeto (set point). Uma perturbagao
ocorre na temperatura de entrada e, de acordo com o que ocorre na saida medida
constantemente, o controlador direciona sua tomada de decisao a valvula de
injecao de vapor a fim de minimizar o desvio na resposta. O ponto critico do ganho
proporcional Kc foi calculado com o objetivo de analisar a estabilidade do sistema
para trés diferentes valores de Kc. Um menor que o ponto critico, um exatamente
no ponto critico € um maior que o ponto critico. Pelo método analitico de Routh
obteve-se o valor critico de 5,8426. Pelos métodos numéricos desenvolvidos no
software MATLAB (Matrix Laboratory), como o Método Newton-Raphson com
divisbes sintéticas e o Método de Bisseccdo, o valor obtido se encontrou entre
5,841932 e 5,841942. Os outros ajustes escolhidos foram 3 e 10. Por meio de
graficos gerados no software, foi visualizada a influéncia do ganho proporcional na
estabilidade e o0s possiveis comportamentos dindmicos da resposta as
perturba¢des impulso e degrau. Deste modo, foi constatado que, dentre as trés
condi¢des de estabilidade simuladas, o controle PID teve melhor desempenho
quando Kc = 3.

Palavras-chave: Estabilidade. Controlador proporcional-integral-derivativo. Tanque
de Aquecimento com Agitacgao.



ABSTRACT

JOHNSON, J. R. Stability simulation of a three-mode feedback control system
in a stirred-tank heater. 2021. 63 p. Monography (Term Paper in Chemical
Engineering) — Escola de Engenharia de Lorena, Universidade de Sao Paulo,
Lorena, 2021.

Process control is essential to the design of a chemical plant as it compensates for
any deviations from process variables that must remain at specified values. In order
to argue about the essential nature of control, this monography presented as an
example of a process a continuous stirred-tank heater. The product at the exit runs
the risk of not guaranteeing a uniform composition when decomposing at high
temperatures or becoming an incomplete mixture at low temperatures. Therefore, it
is essential that this process has a temperature control loop. The tank is fed with a
fluid which, when stirred at a certain temperature, the property intended by the
design is achieved. The process is controlled by a proportional-integral-derivative
(PID) controller, whose controlled variable is the outlet temperature. This must be
kept at a desired design value (set point). A disturbance occurs in the inlet
temperature and, according to what happens in the constantly measured outlet, the
controller directs its decision making to the steam injection valve in order to minimize
the deviation in the response. The critical point of the Kc proportional gain was
calculated in order to analyze the stability of the system for three different values of
Kc. One lower than the critical point, one exactly at the critical point, and one greater
than the critical point. By the analytical method of Routh, the critical value of 5.8426
was obtained. By the numerical methods developed in the MATLAB software (Matrix
Laboratory), such as the Newton-Raphson Method with synthetic divisions and the
Bisection Method, the obtained value was found between 5.841932 and 5.841942.
The other settings chosen were 3 and 10. Through graphics generated in the
software, the influence of the proportional gain on stability and the possible dynamic
behaviors of the response to impulse and step disturbances were visualized. Thus,
it was found that, among the three simulated stability conditions, the PID control
performed better when Kc = 3.

Keywords: Stability. Three-mode controller. Stirred-tank heater.
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1 INTRODUCAO

O controle de processos quimicos é imprescindivel para uma planta quimica
que demanda a manutencdo das variaveis de processo dentro dos valores
desejados em um projeto. O sistema de controle € de enorme utilidade,
independentemente do tipo de processo ou condi¢des operacionais envolvidas.
Qualquer industria que almeja o0 sucesso em ambitos comerciais, econémicos e
socioambientais o tem como parte integrada (SALVARANI, 2015).

Os beneficios de se empregar uma malha de controle s&o diversos. Dentre
eles, se destacam a previsibilidade adquirida diante de um comportamento
naturalmente dindmico, a manutencdo continua da qualidade do produto e a
diminuicao da necessidade do trabalho humano. Deste modo, a lucratividade e a
produtividade estdo diretamente relacionadas ao bom funcionamento do controle
(SMITH; CORRIPIO, 2008).

Além disso, deve-se salientar que a seguranca operacional e a protecao
ambiental sdo exigéncias da legislacao no ambito industrial. Dessa forma, variaveis
do processo que causam desordem e possiveis acontecimentos danosos tanto aos
operadores quanto ao meio ambiente devem ser submetidos ao controle de
processos. Como exemplo, um controlador bem mensurado pode evitar o
transbordamento de tanques, excesso de rejeitos, explosdes e até possiveis
acidentes operacionais (STEPHANOPOULOQOS, 1984).

De acordo com Smith e Corripio (2008), existem duas condi¢cbes de controle
distintas. Na condigdo manual, um operador deve observar constantemente o que
ocorre com a medicao da variavel controlada para intervir no processo. Esta forma
de controle ndo foi o enfoque do trabalho, e sim a condicdo automatica que
substituiu amplamente a primeira em processos quimicos, principalmente por
minimizar os erros gerados pelo modo manual.

O controlador, antes de fazer parte de um sistema real, deve passar por
testes que simulam eventuais perturbag¢des para provar assim sua capacidade de
compensar os efeitos dessas sobre o produto de interesse (CARVALHO, 2014). O
comportamento dindmico desses sistemas é descrito em equacdes diferenciais
lineares e convertidos em transformadas de Laplace. Portanto o uso de um software

computacional é indispensavel para examinar a relagéo controle-sistema.
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1.1 Objetivo geral

Avaliar a influéncia do ganho proporcional (Kc) na estabilidade de um tanque
de aquecimento com agitagcdo continua controlado por um sistema de

realimentacao PID.

1.2 Objetivos especificos

o Analisar a estabilidade do sistema pelo método analitico de Routh e obter o
ponto critico do Kc;

o Executar métodos numéricos usando linguagem de programagdo do
MATLAB para pesquisar o ponto critico;

o Simular as respostas do sistema as perturbac¢des impulso e degrau para
diferentes valores de Kc;

. Determinar o desempenho do controle PID para as condigbes de

estabilidade simuladas.
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2 REVISAO BIBLIOGRAFICA

2.1 Controle de Processos Quimicos

O projeto de uma planta quimica impde que sua operacao cubra varias
exigéncias para que as variaveis de processo sejam mantidas com valores
especificados. Para que essas especificacbes sejam garantidas, malhas de
controle sdo necessarias, interligando-se a planta, e conservando estas variaveis
nos valores desejados de projeto (STEPHANOPOULOS, 1984).

Segundo Smith e Corripio (2008), um sistema de controle necessariamente
deve apresentar trés componentes basicos: transmissor-sensor, controlador e
elemento final de controle. Esses componentes tém uma grande relevancia, pois
vao realizar os trés procedimentos basicos de um sistema de controle.

Sao estes:

. Medicdo da variavel controlada, realizada pelo transmissor-
sensor, onde se inicia 0 monitoramento;

. Decisao, que é tomada pelo controlador para manter a variavel
controlada em seu valor de projeto;

. Acdo, que é o resultado efetivo da decisdo do controlador e
ocorre no elemento final de controle (geralmente, uma valvula de
controle).

O controle de malha fechada se d4 quando a acéo, ao ser efetuada, gera
uma mudanc¢a na medicao da variavel controlada e, consequentemente, na decisdo
do controlador. Estas etapas se repetem e um ciclo é gerado. Ja, a condicao de
malha aberta consiste na inexisténcia desse ciclo. Nao ha uma realimentagéo e a
medicdo da variavel controlada n&o altera o sinal de saida do controlador (SMITH;
CORRIPIO, 2008).

Conforme Ogata (2011), deve-se conceituar alguns termos que sempre
fazem parte do assunto:

. Variavel controlada: é a variavel cujo valor real deve ser
mantido em um set point (valor de referéncia);
. Variavel manipulada: é a variavel cujo ajuste mantém ou

aproxima a variavel controlada do set point,
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. Disturbio: variavel que sofre mudanca durante o processo e
causa o afastamento da variavel controlada em relagcéo ao set point.
Este trabalho deu maior enfoque a estratégia de realimentacao, cujo controle
€ baseado no sinal de transmissao proveniente da medicao da variavel controlada.
O controlador ndo tem conhecimento da origem e nem do tipo de disturbio, apenas
0 que ele causa. Porém, a desvantagem € que esse deve esperar a propagacao do
distarbio ao longo do processo até atingir a variavel controlada (SMITH; CORRIPIO,
2008).

2.2 Controladores de Realimentacao

De acordo com Stephanopoulos (1984), os controladores sao os dispositivos
responsaveis por manter a variavel monitorada em um ponto fixo. Sua funcéo é
receber o sinal de transmiss&o e compara-lo ao sinal do set point, pré-programado.
Assim, a entrada do controlador é o erro. Esse erro é a diferenca entre o ponto fixo
e o valor real da variavel controlada em certo instante. Através desse erro, o sinal
de saida do controlador € gerado. Esse sinal ajusta a variavel manipulada e
minimiza o erro.

Os controladores de realimentacdo podem ser classificados de acordo com

0 numero de acgdes para solucionar o erro:

. Controlador Proporcional (P);
. Controlador Proporcional-Integral (Pl);
. Controlador Proporcional-Integral-Derivativo (PID).

Segundo Smith e Corripio (2008), essa espécie de controlador decide como
executar o controle de acordo com a solucdo de uma equagdo baseada na

diferenga entre a variavel controlada e o set point.
2.2.1 CONTROLADOR PROPORCIONAL (P)

E o controlador que tem seu sinal de saida proporcional ao erro. Segundo

Stephanopoulos (1984), a Equacgéo 2.1 descreve seu comportamento:

c(t) =cs + K, *e(t) (2.1)
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Onde:
o c(t) — sinal de saida do controlador em certo tempo;
o ¢, — bias, ou sinal de saida do controlador no estado
estacionario inicial, quando o erro € nulo;
o K. — ganho proporcional do controlador;
o e(t) — erro em certo tempo.
A funcéao de transferéncia (FT) do controlador pode ser obtida através da
equacao em variavel de desvio. Ao escrever a Equacao 2.1 em variavel-desvio,
tem-se a Equagéao 2.2:

C(t) =K. *E(t) (2.2)

Onde:
. C(t) = c(t) —cs; variavel de desvio é a diferenca entre a
grandeza em certo tempo e seu valor em estado estacionario;
. E(t) = e(t) — es; e, = 0; 0 erro no estado estacionario inicial &
nulo.
Ao aplicar transformada de Laplace (TL) na Equagéo 2.2, tem-se a FT do
controlador P na Equacéo 2.3:

Ge(s) = K, (2.3)

Para Smith e Corripio (2008), a vantagem de se utilizar esse controlador é
que ele apresenta apenas um parametro de sintonia, o ganho proporcional (Kc), o
que facilita a sintonizagéo. Entretanto, a desvantagem é a presenca permanente de
um erro residual (offset), o que afasta constantemente a variavel controlada do set
point.

Na Figura 2.1, pode-se observar que mesmo apos a agao do controlador,

um erro residual ainda persiste em estado estacionario.
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Figura 2.1 — Resposta do nivel de liquido ao longo do tempo com diferentes ganhos
proporcionais.

I ¢ 7 = ¥ 7T ]

hiz), ft

6,0 e e

- Ponto flxc'
K, <K<K

Fonte: SMITH; CORRIPIO, 2008, p. 160

Percebe-se, pela Figura 2.1, que quanto maior é o Kc, menor € o offset,
porém maior € a oscilagdo do processo, ou seja, mais instavel. Para a maior parte
dos processos, hd um ganho maximo que, ultrapassado, o sistema torna-se
instavel. Consequentemente, para manter a estabilidade, o erro em estado

estacionario ndo pode ser completamente eliminado (SMITH; CORRIPIO, 2008).
2.2.2 CONTROLADOR PROPORCIONAL-INTEGRAL (PI)

E o controlador utilizado quando ndo é possivel operar com offset. Neste
controle, existem duas ag¢des que atuam conjuntamente, a proporcional e a integral.
Também é conhecido como controlador proporcional e restaurador, segundo
Stephanopoulos (1984). Sua Equacgao 2.4 é descrita a seguir:

K. (2.4)
c(t) =K, xe(t) + T—f e(t) dt + ¢,

l

Onde: t; - tempo integral ou de restauracao, em minutos;

O tempo integral é o parametro de sintonia juntamente com o Kc. Nesse
controle, o erro no estado estacionéario é totalmente eliminado. O controlador PI
varia constantemente sua saida enquanto o erro ainda estiver presente. Ocorre a

integracao do erro. Somente quando o erro € zerado que a variacao na saida do
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controlador cessa. Assim, a varidvel controlada retorna ao set point
(STEPHANOPOULOS, 1984).

A FT é obtida ao seguir o mesmo procedimento do controlador P ao aplicar
variavel-desvio e TL, na Equacgéo 2.5:

c 1
G.(s) = % _K, (1 + E) (2.5)

A Figura 2.2 ilustra como a agéo integral anula o erro residual através da

integracao:

Figura 2.2 — Resposta do nivel de liquido ao longo do tempo com controladores Pl e P

h(z), ft

Tempo

Fonte: SMITH; CORRIPIO, 2008, p. 164
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De acordo com Kwong (2002), o uso do controle Pl tem algumas
desvantagens. Pode gerar comportamento oscilatorio em processos de primeira
ordem. Ja um processo de segunda ordem pode se tornar instavel com esse tipo
de controlador.

Na Figura 2.3, € demonstrado o significado fisico do tempo integral. Esse é
o intervalo de tempo necessario para que o controlador repita a acao tomada pelo
modo proporcional (SMITH; CORRIPIO, 2008). Assim que o controlador é
informado do erro em t = 0, ocorre uma variagao degrau em sua saida. O tempo

que leva para que essa variacao se repita € o tempo integral ou de restauracao.

Figura 2.3 — Resposta do controlador Pl a uma variagao em degrau no erro

147

(‘S + A’I.'E [ e

0 1 Iry Time

Fonte: STEPHANOPOULOQS, 1984, p. 247

2.2.3 CONTROLADOR PROPORCIONAL-INTEGRAL-DERIVATIVO (PID)

Este é o controlador mais sofisticado descrito até aqui. A acao derivativa,
também conhecida como antecipatéria, tem como objetivo dar ao controlador o
poder de antecipar o comportamento do erro em relacdo ao tempo ao examinar a
sua derivada (SMITH; CORRIPIO, 2008). Possui trés parametros a serem
sintonizados: o ganho Kc, o tempo de restauracao (t;) € o tempo derivativo (zy).

A Equacéao 2.6, segundo Stephanopoulos (1984), € descrita a seguir:

o) = Ke v () + = [ e(®) e+ Ke vt L0, (2.6)

L
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A FT desse controlador é encontrada do mesmo modo que os controladores

P e PI, na Equacéo 2.7:

1
G.(s) = K, * (1 + p + TdS) (2.7)

L

O controlador PID procura minimizar o desvio da variavel de processo ao se
basear na taxa de variacao do erro ao longo do tempo. Sensivel a velocidade de
aumento ou diminuicdo do erro, reduz as oscilagées ao redor do set point. Esse
controle ndo atua quando o erro é constante, apenas quando varia. A estabilidade
do sistema é, assim, garantida de forma mais rapida (STEPHANOPOQULQS, 1984).

De acordo com Smith e Corripio (2008), esses controladores sao indicados
para processos mais lentos, como malhas de temperatura, que nao apresentam

ruidos.
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2.2.4 AGAO DIRETA E REVERSA DO CONTROLADOR

O desvio da variavel controlada em relagdo ao set point e a tomada de
decisdo do controlador para minimiza-lo determina o sinal matematico do Kc em
uma malha de realimentacéo.

De acordo com a definicdo do erro descrita na se¢éo 2.2 e conforme Smith
e Corripio (2008), um aumento na variavel controlada em relacao ao set point pode
diminuir o sinal do controlador. Neste caso, a acdo de controle é reversa e Kc
adquire sinal positivo. Caso contrario, onde o aumento da variavel controlada causa
um aumento no sinal do controlador, a agao é direta e Kc adquire um sinal negativo.

Sistemas de aquecimento com injecao de vapor é um exemplo tipico de
controle com acao reversa, pois quando a temperatura de saida aumenta em
relacdo ao set point, o controlador decide pelo maior fechamento da valvula para
menor entrada de vapor e, consequentemente, menos transferéncia de calor, para
minimizar o desvio. Ja, sistemas de controle de nivel como o citado na Figura 2.2,
sao tipicos de acao direta, onde o controlador decide por um aumento da vazao de
saida caso a altura do liquido no reservatério se eleve em comparagéo com a altura
no regime estacionario. Nesses casos, € considerado que o aumento do sinal do
controlador representa abertura da valvula e a queda do sinal, fechamento (SMITH,;
CORRIPIO, 2008).

2.3 Estabilidade

2.3.1 CONCEITO DE ESTABILIDADE

Conforme Coughanowr e Koppel (1978), “[...] um sistema estavel sera aquele
para o qual a resposta de saida € limitada para todas as entradas limitadas.”

Ja Stephanopoulos (1984, tradugdo nossa) constata que “um sistema é
considerado instavel se, ap6s esse ter sido perturbado por uma mudanca na
entrada, sua saida se deslocou e ndo retornou ao estado inicial de repouso”.

As Figuras 2.4 e 2.5 ilustram de forma simplificada a definicdo de sistemas

estavel e instavel:
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Figura 2.4 — Sistema estavel ou auto regulatorio!

X

Fonte: Departamento de Engenharia Quimica da Universidade Federal de Sdo Carlos.

Figura 2.5 — Sistema instavel?

Fonte: Departamento de Engenharia Quimica da Universidade Federal de Sdo Carlos.

2.3.2 FUNCOES DEGRAU E IMPULSO

Como exemplos de entradas limitadas tem-se as fungdes degrau e impulso,
ilustradas nas Figuras 2.6 e 2.7, respectivamente. Sao funcdes que, no dominio do

tempo, convergem a um valor finito.

' Disponivel em: <http://www.professores.deq.ufscar.br/ronaldo/cp1/pdf/aulal2.pdf> Acesso em
maio de 2018.
2 Disponivel em: <http://www.professores.deq.ufscar.br/ronaldo/cp1/pdf/aulal2.pdf> Acesso em
maio de 2018.


http://www.professores.deq.ufscar.br/ronaldo/cp1/pdf/aula12.pdf
http://www.professores.deq.ufscar.br/ronaldo/cp1/pdf/aula12.pdf
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Figura 2.6 — Fungéo degrau unitario®

u-1(t)

[ \l,-’

Fonte: Departamento de Engenharia Elétrica da PUC-Rio

Pode-se interpretar uma perturbacdo na entrada em degrau como uma
variacdo brusca em certo instante que permanece constante ao longo do tempo
(OGATA, 2011). Como exemplo, pode-se considerar uma torneira, que ao ser
aberta, o registro € deixado na mesma posicdo sem variagao do fluxo de agua. De

nulo, o fluxo passou a ser constante.

Figura 2.7 — Fungéo impulso unitario*

§(t)

(1)

~ |

Fonte: Departamento de Engenharia Elétrica da PUC-Rio

3 Disponivel em: <http://www.maxwell.vrac.puc-rio/29821/introducao.html> Acesso em junho de
2021.
4 Disponivel em: <http://www.maxwell.vrac.puc-rio/29821/introducao.html> Acesso em junho de
2021.
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Ja uma perturbacado na entrada em impulso pode ser interpretada como uma
variacao altissima em um instante infinitamente pequeno, que retorna ao valor de
zero ao longo do tempo. O infinito, neste caso, pode ser interpretado como um
altissimo valor. Como exemplo, um choque térmico exemplifica bem a funcao
impulso.

De acordo com Ogata (2011), essas perturbagdes sao frequentemente
usadas para simular a resposta de um sistema submetido a um controle, e sua
estabilidade. No caso de um sistema que sofre variacées bruscas na entrada e o
novo valor permanece, a fun¢do degrau € um sinal de teste mais apropriado. Em

contrapartida, a funcéo impulso é mais recomendavel para variagées de impacto.
2.3.3 POLOS E ZEROS

A fim de compreender melhor o conceito de estabilidade, deve-se conceituar
polos e zeros. Considere a FT abaixo:

N(s) (2.8)
D(s)

G(s) =

N(s) e D(s) sao polinémios (numerador e denominador) irredutiveis entre si,
isto €, ndo apresentam fatores comuns. D(s) possui grau maior que N(s) para que
o sistema seja fisicamente realizavel. Zeros (z) sdo as raizes do numerador e,
consequentemente  G(z) > 0 quando s =z . Polos (p) sdo as raizes do
denominador e, desse modo, G(p) —» « quando s =p (STEPHANOPOULQOS,
1984).

2.3.4 CRITERIO DE ESTABILIDADE

A resposta para um sistema de controle em malha fechada é descrita a
seqguir pela Equacao 2.9, dada por Stephanopoulos (1984):

_ Gp(s)Gf(s)Gels) G4(s)
V) = 2, 06,060me | PO T Tg o5 waeme 4 @9)
PR P!
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Que é equivalente a Equacao 2.10:

Y(s) = Gsp(s) * Ysp(s) + Groaa(s) * d(s) (2.10)

A estabilidade da resposta em malha fechada é determinada pelos polos de
Gsp(S) € Gload(s).

Os polos sao iguais para ambas as funcées, pois os denominadores da
Equacéo 2.9 s§o iguais:

1+ Gp(s)Gr(s)Ge(s)Gm(s) =0 (2.11)

A Equacado 2.11 é a equacéao caracteristica do sistema. A estabilidade do
mesmo depende das raizes da equacgdo acima. Tanto € que essa equacao se
chama “caracteristica” por caracterizar o comportamento da resposta do sistema
em malha fechada.

Ao resolvé-la, suas raizes (p») sao obtidas na Equacéo 2.12:

14+ Gp(s)Gr(5)Gc(s)Gm(s) = (s —p1) (s —p2) ... (s—pn) =0 (2.12)

Pode-se concluir como primeiro critério de estabilidade que um sistema de
controle de realimentacao é considerado estavel quando todos os polos (raizes da
equacao caracteristica) sdo numeros reais negativos e pares conjugados
complexos com parte real negativa. Em contrapartida, caso um dos polos é real
positivo ou os pares conjugados complexos ter parte real positiva, o sistema é
instavel (STEPHANOPOULOS, 1984).

Para compreender melhor a razdo disso ocorrer, a Equagéo 2.9 deve ser
expandida em fragdes parciais:

Y(s) =

by 4 b2 4 bn + resposta forcada (2.13)

S=P1 STD2 S=Pn
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Ao aplicar transformada de Laplace inversa (TLI) na Equagéo 2.13, tem-se a
fungéo temporal 2.14, que descreve o perfil da resposta em malha fechada apds a
perturbacao na entrada:

y(t) = by x eP1t + b, * eP?t + .- + b, x eP™ + resposta forcada (2.14)

Conforme Smith e Corripio (2008), a resposta global € a soma da resposta
natural com a resposta forcada. A forcada é gerada pelos polos da perturbacéo na
entrada e a natural é oriunda dos polos da FT.

A estabilidade em um sistema linear depende exclusivamente da sua
equacao caracteristica, ou seja, € uma propriedade inerente ao sistema, somente
quando as formas de estimulo sao limitadas, como o impulso ou degrau. Ja, aonde
o estimulo limitado ocorre, se é na carga ou no set point, isso nao interfere na
estabilidade. (COUGHANOWR; KOPPEL, 1978).

Segundo Smith e Corripio (2008), para raizes reais: caso
p < 0, entdo e?* tende a 0 ao passo que o tempo tende ao infinito. Para raizes
complexas p = a + Bi, entdo e?* =e* * sen (Bt +6). Caso a <0, entdo e** = sen (Bt +
0) tende a 0 ao passo que o tempo tende ao infinito.

Logo, a parte real das raizes complexas e as raizes reais da equacao
caracteristica devem ser negativas para os termos da resposta tenderem a 0. Isto
significa que a resposta é limitada ao decorrer do tempo. Quando um termo
exponencial € decrescente, esse indica que ocorre estabilidade. Quando sao
gerados termos exponenciais crescentes na resposta da malha, surge instabilidade
no sistema. O plano complexo s apresentado pela Figura 2.8 posiciona as raizes
em regides estavel e instavel ao delimitd-las com o eixo vertical imagindrio e o eixo
horizontal real (SMITH; CORRIPIO, 2008).
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Figura 2.8 — Plano s (regido estavel a esquerda e regiao instavel a direita)

Planos Imaginario

P g At
> |

Estavel- Instavel

Planc esquerdo Planc direite

Fonte: CARVALHO, 2014, p. 22

2.3.5 TESTE DE ESTABILIDADE DE ROUTH

Este teste de estabilidade ndo € baseado em calcular os valores das raizes
da equacao caracteristica, conforme Stephanopoulos (1984). O critério requer
saber se ha alguma raiz no lado direito do eixo imaginario do plano s.

Coughanowr e Koppel (1978) averiguaram que, caso a equacao
caracteristica apresente raizes com partes reais positivas, isso ja comprova a
instabilidade do sistema. Caso ndo apresente, o sistema € estavel.

Para isso, é necessario escrever a Equacao caracteristica2.11 em sua forma

polinomial, como na Equacao 2.15:

ao* s"+ai* s" 1+ -+ an-1*xSs+an=0 (2.15)

Onde ao> 0.

Caso ao < 0, deve-se multiplicar a equacao por -1. Todos os coeficientes
devem ser positivos. Caso um coeficiente seja negativo, o sistema ja € declarado
instavel e ndo ha necessidade de prosseguir o teste. Se todos os coeficientes do
polinbmio de grau n forem positivos, o sistema pode ser estavel ou instavel.
Portanto, deve-se realizar o segundo teste, que é o arranjo de Routh. Nesse arranjo,

os coeficientes devem ficar nas duas primeiras linhas. O arranjo deve ter n+1 linhas.
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Se o polinémio tiver 7 coeficientes, por exemplo, o arranjo tem que ter 8 linhas
(COUGHANOWR; KOPPEL, 1978).

A Tabela 2.1 apresenta o arranjo de Routh:

Tabela 2.1 — Arranjo de Routh

Linhas Coeficientes

1 a0 a2 a4 a6
2 ail a3 ad ar
3 b1 b2 b3
4 ct c2 c3
5 d1 d2
6 el e2
7 f1

n+1 g1

Fonte: Adaptado de (COUGHANOWR; KOPPEL, 1978, p. 150)

Os elementos a partir da linha 3 sdo encontrados com as equagbes

subsequentes:

B, = a1*Az—0g*a3
1

a,

Qaq1*Ay—0p*Qs
bz = —
aq
byxaz—aq,*b,
Cl - —
by
b *ag—a1*b3
CZ =

b,

(2.16)

(2.17)

(2.18)

(2.19)

Os elementos restantes séo calculados ao seguir a l6gica das Equacgdes

2.16, 2.17, 2.18 e 2.19. Finalizados os calculos, é verificado se os elementos da

primeira coluna sao positivos e diferentes de zero. Caso sejam, o sistema é estavel.

Se algum elemento dessa coluna for negativo, o sistema é instavel. O niumero de
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trocas de sinal da primeira coluna € igual ao numero de raizes com parte real
positiva (STEPHANOPOULQOS, 1984).
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3 METODOLOGIA
3.1 Processo Proposto

Esta monografia abordou sobre um processo teorico proposto por
Constantinides e Mostoufi (1999). Segundo Smith e Corripio (2008), um tanque de
aquecimento com agitacdo continua cujo fluxo de alimentacao € liquido precisa ser
mantido sob aquecimento para manter sua composicao uniforme. Nesses tipos de
reservatérios com agitagdo, € fundamental o controle da temperatura para o
produto final ndo se decompor em altas temperaturas, nem se tornar uma mistura
incompleta em baixas temperaturas. Uma valvula injetora de vapor é conectada ao
processo para que haja entrada de vapor e consequente transferéncia de calor
latente ao fluido, devido a condensacéo. Assim se da o aquecimento da matéria-
prima.

O processo € submetido a um sistema de realimentagdo em malha fechada
sob acao proporcional-integral-derivativa (PID). O controlador toma a decisdo sobre
a posicao da valvula (variavel manipulada), o que gera seu fechamento ou abertura
diante da medicdo. A perturbagdo, de acordo com Constantinides e Mostoufi
(1999), ocorre na temperatura de entrada (carga) e causa o desvio da temperatura
de saida em relacao ao set point. A Figura 3.1 esquematiza o tanque sugerido:

Figura 3.1 — Tanque de aquecimento sob agitagdo continua

Produto aquecido

Tanque de
aquecimento
com agitagao

Matéria-prima fria

Fonte: CARVALHO, 2014, p. 25
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A finalidade do controlador PID é retornar a temperatura de saida em seu set
point, ao minimizar o erro, até zera-lo. Por isso, é relevante analisar a estabilidade
do processo a partir do seu Kc. O ganho critico é calculado, e a partir desse, a
estabilidade do processo pode ser analisada para diferentes valores.

A FT global do sistema em malha fechada € dada em Constantinides e
Mostoufi (1999). A modelagem que resulta nessa fungdo € demonstrada na segéo

seqguinte.
3.2 Modelagem

A Figura 3.2 demonstra como um processo pode ser dividido em
componentes, definidos num diagrama de blocos. Portanto, de acordo com
Coughanowr e Koppel (1978), o processo proposto pode ser desmembrado em
processo, elemento de medida (sensor-transmissor), elemento final de controle

(valvula de injecao de vapor) e o controlador PID.

Figura 3.2 — Diagrama de blocos para um sistema de controle simples

)] e
Mecamsmu_ \cgﬂ?omme T, Carga

-
/
/

4

Comparador ¥ meaoess
o " ){' Elemento " s
i n_—->(x Cy| Controlador === final de Processo —>» T
A [ Varidvel
Ponto de \ | controle | s
referéncia ~ \ ; controlada

NErro

" I a

Ty | Elemento |
Variavel medida | ¢e medida

l J

Fonte: COUGHANOWR; KOPPEL, 1978, p. 99

Constata-se em Constantinides e Mostoufi (1999) que todos os componentes
do processo sao sistemas de primeira ordem. Portanto, suas FT's também sao.
Para se chegar a FT global, é considerado um balanco de energia para o

tanque em regime transiente:

q + wC(T; — Ty) — wC(T — Tp) =pCV% (3.1)
Onde:
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. q — fluxo térmico proveniente do vapor;

. w — vazao massica;

. ¢ — calor especifico do fluido;

. T:— temperatura de entrada;

. To — temperatura de referéncia (set point);

. p — densidade do fluido;
. V — volume de fluido dentro do tanque.

A Equacao 3.1 é descrita em regime estacionario, quando % =0:

qs + wC (Tis—To) —wC (Ts—To) =0 (3.2)

A Equacéao 3.2 é subtraida da Equacao 3.1 e as variaveis-desvio surgem na

Equacéo 3.3:

(@ = q5) + WC[(T; = Tie) = (T = T))] = pcv 22 (3.3)

Onde sao substituidas pelas Equagdes 3.4, 3.5 e 3.6:

. q—qs=0Q (3.4)
. Ti—Tis=T":
. T—Ts=T (3.6)

Portanto, obtém-se a Equagéao 3.7:

Q+wC(T' —T") = pcv & (3.7)
Ao aplicar a TL, obtém-se a Equacao 3.8:

T'(s) (& xs+1) =L2 4 7i(s) (3.8)

~ we

A expressao anterior € descrita conforme a Equagéao 3.9:
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1

T'(s) = TPF * Q(s) + 1

s+1 Tp*S+1

* T'i(s) (3.9)

p*V

Onde: 7, =

Quando o processo apresenta somente variagao na temperatura, Q(t) =0,
tem-se a seguinte FT descrita na Equacao 3.10:

T'(s) 1
Tri(s) Tp*s+1

Gy(s) = (3.10)

Quando o processo apresenta somente variagcdo na entrada de calor, T'i(t)
= 0, tem-se a seqguinte FT descrita na Equacao 3.11:

T _
Go(s) = %@ =

wie __ K
TyrsHl  Tprstl

(3.11)

Onde: Kp — ganho estéatico de primeira ordem do processo e 7, — constante
de tempo de primeira ordem para o processo.

Agora, conforme Coughanowr e Koppel (1978), € determinada na Equacgéao
3.12 a FT do elemento de medida, que como ja foi dito, € um sistema de primeira

ordem:

_ T' ;m(s) _ Knm
Gn(s) = TG = memt (3.12)

Onde:

. Km — constante de primeira ordem do elemento de medida;

) Tm — constante de tempo de primeira ordem do elemento de
medida;

. T'm(s) — variavel de desvio da temperatura de saida medida;

. T'(s) — variavel de desvio da temperatura a ser medida (entrada
do sensor).

Ao considerar que o controlador no estudo € um controlador proporcional-
integral-derivativo (PID), ja foi definida sua FT na Equacao 2.7:
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Gc(s)=KC*(1 +$+rd_*s) (3.13)

De acordo com Coughanowr e Koppel (1978), a Equacao 3.14 descreve a
FT do elemento final de controle, que como também ja foi mencionado, é um

sistema de primeira ordem:

_8 _ K
Gf(s) - P(s) - Ty*S+1 (3.14)

Onde: Kv— constante de primeira ordem da valvula e t» — constante de tempo
de primeira ordem da valvula.

Com todas as FT’s dos componentes demonstradas, um diagrama de blocos
para representa-las é bem util. Assim, fica mais facil compreender a origem da FT

global dada em Constantinides e Mostoufi (1999). A Figura 3.3 ilustra o diagrama:
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Figura 3.3 — Diagrama de blocos de um sistema de realimenta¢cdo em malha fechada

y; ( £ C— s ﬁ &) ! : "
»(§ _ E(s) o, 9 6, (s) { 0,6 . 5(s)
Controlador Elemento final =~~~ -~ e saea
de controle rocesso
Vm (8)
Gu(s)
Medidor

Fonte: CARVALHO, 2014, p. 29

A Figura 3.3 apresenta como os componentes de um sistema de controle
realimentado interagem entre si. A resposta em malha fechada é descrita na
Equacéo 3.15, conforme Stephanopoulos (1984), e equivale a Equagéo 2.9:

L Gp(9)GH(5)G(s) G4(s)
Y6) = naononmne Ot eoseamane <4 ©19)
P f P f

Na Equacdo 3.15, segundo Stephanopoulos (1984), o primeiro termo
representa o efeito sobre a variavel controlada proveniente de um disturbio no set
point. Ja o segundo termo representa o efeito sobre a variavel controlada
proveniente de um disturbio na carga. Como no processo estudado o set point nao
é considerado um distarbio, o termo Ysp(s) é nulo. Portanto, ndo ha controle servo,
apenas controle regulador. O controlador PID tem a funcdo de compensar apenas
a perturbacdo na carga (variacdo na temperatura de entrada) para retornar a
temperatura de saida préxima ao valor de set point.

Portanto, ao anular o primeiro termo da Equacgéo 3.15, obtem-se:

Y(s) = 54t vd(s) (3.16)

146y ()G (s)Ge(s) G (s)
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Sao substituidas na Equacao 3.16 as expressdes que representam as FT's
dos componentes e a modelagem ¢é finalizada:

1
Y(s) _ Tp*s+1

o K
d(s) 1+< P >*( Ky )* KC*(1+i*S+Td*S) *( Km )
Tp*5+1 Ty*5+1 Ti Tn1*S+1

(3.17)

Ao multiplicar o numerador e o denominador da Equagao 3.17 por 7i* s,

obtem-se a Equacao 3.18:

Tj*S

Y(s) _ Tp*s+1

d(s) [ﬂ'*s+( LTS )(T-*s+1+r *T'*Sz)] 15
('rp*s+1)('rv*s+1)(‘rm*s+1) L arti

Ao seguir o que é proposto por Constantinides e Mostoufi (1999), substitui-
se:
K = Kp*Kv*Km*Kc

Ao desenvolver a Equacao 3.18, é obtida a Equacéao 3.19, que desenvolvida

novamente, gera a Equacéo 3.20:

Ti*S
Y(s) Tpxs+1
d(s) - Ti#5(Tprs+1)(Tprs+1) (Tmrs+1) K(tjxs+1+Tg*T;*s2) (319)
{[ (tp*s+1)(Tp*s+1)(Tms+1) ] [(rp*s+1)(rv*s+1)(rm*s+1) }

Y(s) TS . ( (tps+1)(Tps+1)(Tms+1) ) (3.20)

da(s) - (‘L’pS+1) Tl-s(rps+1)(rvs+‘l)(rms+1)+l\’(ris+1 +T4T;52)

Ao cancelar alguns termos do numerador e do denominador, € obtida a FT
global do problema proposto por Constantinides e Mostoufi (1999):

Y(s) (1;5)(tys+1) (T s+1) (3 21)

d(s) 75 (Tps+1) (Tps+1) (T S+1)+K (T35+1+74T;5%)

O denominador da Equacédo 3.21 é igualado a zero, o que determina a

equacao caracteristica.
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Descreve-se o denominador da Equagéo 3.21 na sua forma polinomial, como
na Equacao 3.22:

TiTpTmTy S* + (TiTpTmTv + TiTpTv + TiTmTv) S3 +

(Ktitd + titp + Titv + Titm) S2+ (ti+ K1) s+ K=0 (3.22)

Um parametro K na equacéo caracteristica depende do ganho proporcional
do controlador Kc.

O valor critico € o valor limite de Kc para que o sistema deixe de ser estavel
para se tornar instavel. Matematicamente, é o valor limite entre os valores que
geram raizes reais negativas e complexas com parte real negativa e valores que
geram raizes reais positivas e complexas com parte real positiva. Para se calcular

o valor critico analiticamente, foi usado o critério de estabilidade de Routh.

3.3 Teste de Estabilidade de Routh Aplicado

Diferentes valores daqueles encontrados em Constantinides e Mostoufi
(1999) para os parametros constantes da Equacédo 3.22 foram admitidos com o
objetivo de garantir maior singularidade aos resultados dessa monografia, posto
que os primeiros ja foram utilizados na monografia de Carvalho (2014).

Os parametros admitidos foram:

e 7;,=95
® T4 = 1,5
e 7,=95
e 7, =48
o 7,=052

e K=21%*Kc

Ao substituir os valores na FT global 3.21, obteve-se:

Y(s) _ 237,12 53495 5249,5 5
d(s)  2252,64 s*+1139,62 s3+(29,925 Kc+185,25) s2+(19,95 Kc+9,5) s+2,1Kc

(3.23)
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A fim de analisar a estabilidade pelo método analitico, foi considerado o
denominador da Equacdo 3.23. As Equacbes 3.24, 3.25 e 3.26 tiveram que
satisfazer o primeiro teste de Routh, em que todos os coeficientes da equacao

caracteristica devem ser positivos.

29,925 K¢ + 185,25 > 0 (3.24)
19,95 Kc +9,5> 0 (3.25)
2,1Kc > 0 (3.26)

Com o desenvolvimento tedrico do arranjo de Routh apresentado na secao
2.3.5 e o denominador da Equacao 3.23, foi possivel chegar ao ponto critico do
ganho proporcional pelo método analitico. A Tabela 3.1 demonstra o procedimento:

Tabela 3.1 — Arranjo de Routh Aplicado

Linhas Coeficientes
1 2252,64 29,925 K¢ 2,1Kc
+ 185,25
2 1139,62 19,95 Kc + 9,5 0
3 166,4723 2,1Kc 0
—9,5082 Kc
4 cl 0 0
5 2,1Kc

Fonte: O préprio autor

Onde:

_ 1581,4868+837,5925 Kc—189,6886 Kc2
o 166,4723-9,5082 K¢

cl
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Conforme o critério de estabilidade, foi realizada a interseccdo entre as
Equacgdes 3.24, 3.25 e 3.26 e o arranjo de Routh. Com isso, o intervalo de valores
de Kc nos quais o sistema é estavel em malha fechada foi encontrado:

0 < Kc <5,8426

Para valores maiores que 5,8426, o sistema é instavel. O ganho critico Kc =
5,8426 foi, assim, obtido analiticamente.

Nota-se que o critério usado ndo fornece mais detalhes do sistema, como 0s
valores das raizes da equacao caracteristica, nem o grau de estabilidade. Apenas
os valores de Kc para os quais o sistema é estavel ou ndao (COUGHANOWR,;
KOPPEL, 1978).

Na proxima secdo, o valor critico foi encontrado com linguagem de

programacao do MATLAB, método proposto por Constantinides e Mostoufi (1999).

3.4 Software de Programacao

O software utilizado para simular valores do Kc, encontrar as raizes da
equagdo caracteristica e definir o valor critico foi o MATLAB® R2021a. O programa
proporcionou ao usuario a chance de elaborar funcées originais.

No intuito de calcular as raizes de qualquer polinbmio de grau n que tenha
até um par de raizes complexas, foi utilizada a fungdo NRsdivision.m de
Constantinides e Mostoufi (1999), que executa o método Newton-Raphson com as
divisdes sintéticas. Ao pesquisar as raizes para certos valores de Kc, a l6gica do
método da bisseccao foi introduzida para encontrar o valor critico.

Todo codigo de programacao para executar esses métodos foi escrito na
janela Editor, que confere a possibilidade de criar novos comandos e executa-los
de uma sé vez. As respostas para os comandos criados foram geradas na janela
Command Window, que também foi usada para executar fungdes mais béasicas a
partir das entradas optadas pelo usuério. Para que essas novas funcdes pudessem
ser executadas com sucesso, fungbes como While, For e If-Else, preexistentes no
programa, foram usadas.

While e For sao fungdes de repeticdo, cujo objetivo de usa-las foi de gerar
loops que produziram iteracdes. Critérios de tolerancia foram escolhidos como
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condi¢oes de parada. Estas fungbes foram necessarias tanto para a aproximagao
da raiz usando o método Newton-Raphson, como na geracao de novos polindmios
por meio das divisbes sintéticas. No caso de poder executar afirmacdes
verdadeiras ou falsas, foi utilizada a funcao If-Else, especialmente no método da
bisseccao.

Outras fungdes pré-programadas também foram de extrema importancia
para realizar a simulagcéo de estabilidade.

3.4.1 METODO DE NEWTON-RAPHSON COM DIVISOES SINTETICAS

O método de Newton-Raphson é a forma mais utilizada de localizar raizes
de polindbmios nao-lineares. Nesse método, a estimativa das raizes se deve a
aplicacédo da derivada da funcéo, que € a reta tangente a curva em certo ponto.
Emprega-se, entéo, a intersec¢édo da derivada com o eixo cartesiano horizontal até
se obter a maior aproximacdo com a raiz. Esse procedimento deve ser repetido
para gerar iteragbes que sao descritas genericamente na Equacao 3.27,

encontrada em Constantinides e Mostoufi (1999):

o
f'(xn)

Xnt+1 = Xp (3.27)

A Figura 3.4 representa como as iteragdes ocorrem. A estimativa inicial € x,
f (xo) € o valor da fungédo em tal ponto, f' (x,) é a derivada em tal ponto e x; é a
interseccao da derivada com o eixo x. Assim, a estimativa para a préxima iteracao

é gerada.



38

Figura 3.4 — Andlise gréfica do Método Newton-Raphson

f(x)

Fonte: RUGGIERO, M. A. G.; LOPES, V. L. R., 1997, p. 66

Esse método é empregado apenas em polinbmios que possuem ao maximo
um par de raizes complexas. No entanto, a vantagem de utiliza-lo é devido ao fato
de o usuério ndo precisar entrar com uma raiz estimada. Esta estimativa que seria
uma aproximacao, pode ser obtida, segundo Constantinides e Mostoufi (1999), pelo
truncamento dos termos de menor poténcia do polindmio. Truncamento € o
procedimento que considera as casas decimais despreziveis em relagdo ao valor
inteiro.

Na Equacdo 3.28, de acordo com Constantinides e Mostoufi (1999), é
considerado que as casas decimais sdo representadas pela soma dos termos da
n-ésima e da (n-1) -ésima poténcia. Portanto, os termos a partir da (n-2) -ésima
poténcia sao truncados, o que torna a soma dos dois primeiros termos préximos de
zero como mostrado na Equacao 3.29. Assim se obtém a raiz inicial aproximada
(x0) na Equacéao 3.30.

fO)=ag*x™+a; *x" ' +a,xx" 2+ +a,=0 (3.28)
g *x"+a, *x"1 =0 (3.29)

Xy — 2 (3.30)

Ao

Deste modo, a partir da estimativa inicial, iteracbes baseadas na Equacao
3.27 sdo realizadas até a maior aproximacdo possivel. E considerada uma
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tolerancia de aproximagao até a sexta casa decimal (tol = 10"-6). Posto isso, a
primeira raiz identificada é removida do polinbmio de grau n através de divisées
sintéticas. Desta forma, um polindmio de grau n-1 é gerado (CONSTANTINIDES;
MOSTOUFI, 1999).

A seguir, encontra-se parte de um exemplo de comando executado no
MATLAB para realizar divisdes sintéticas em loop até encontrar todas as raizes

reais possiveis de um polinémio:

% Calculo dos coeficientes do novo polinémio de grau n-1 apds divisao
sintética

for r = 2:k
b(r) = a(r) + b(r-1) * x1;
end
Onde:
. k — vetor decrescente em passo -1 que comecga no grau n e

termina em 3, que é o ultimo grau passivel de divisao sintética;

. r — vetor crescente em passo +1 que comega em 2 e termina
em n; indica a posi¢ao dos coeficientes no polindmio.

o b(r) — coeficientes do polindmio de grau n-1 onde r é sua
posicao no vetor;

o b(r-1) — coeficientes do polinbmio de grau n-1 onde r-1 é sua
posicao no vetor;

o a(r) — coeficientes do polindbmio de grau n onde r € sua posi¢ao
no vetor;
o x1 —raiz encontrada com o método de Newton-Raphson.

As divisdes sintéticas sdo executadas até o polinbmio atingir o grau 2. O
polinbmio quadratico final é, desta forma, resolvido com o teorema de Bhaskara

(3.31), que geralmente resulta em um par de raizes complexas conjugadas:

—b+vbZ—-4ac
2a -

atBi  (3.31)

A programacdo para criar a fungdo que executa o método de Newton-
Raphson com divisdes sintéticas, conforme Constantinides e Mostoufi (1999), se
encontra no Apéndice A.



40

3.4.2 METODO DA BISSECCAO

Conforme Chapra e Canale (2008), o método da bissecgdo, também
denominado divisdo do intervalo na metade, consiste em encontrar a raiz de uma
fungdo com base no fato desta se localizar em um intervalo onde o produto das
funcbes dos extremos é negativo, o que indica uma mudancga de sinal. O ponto
médio desse intervalo é calculado e um novo intervalo é testado para a mudanca
de sinal com o ponto médio como novo extremo.

Ao observar a primeira iteracdo na Figura 3.5, € constatado que f(12) *
f(16) < 0, portanto a raiz se encontra no intervalo entre 12 e 16 devido a mudanca
de sinal da fungdo. O ponto médio 14 é calculado e f(12) = f(14) > 0, 0 que
constata que a raiz ndo esta nesse intervalo. Portanto, a raiz esta entre 14 e 16,
posto que f(14) = f(16) < 0. O ponto médio 15 é calculado, e assim por diante, até
que o produto seja nulo. E confirmado, portanto, que o Gltimo ponto médio é a raiz
da fungdo (CHAPRA; CANALE, 2008).

Figura 3.5 — Descricao grafica das trés primeiras iteracdes para pesquisa de raizes pelo Método
da Bisseccgéao

Fonte: CHAPRA; CANALE, 2008; p. 102
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3.4.2.1 Método de Bisseccao Adaptado para o Caso Estudado

Por meio de linguagem de programacgéao no MATLAB, a l6gica do método da
bisseccao foi utilizada para encontrar o valor critico do Kc.

Douglas (1972, apud CONSTANTINIDES e MOSTOUFI, 1999) propde um
modelo matematico para resolver o caso de um CSTR isotérmico controlado, cuja
funcao transferéncia é conhecida e sua equacao caracteristica contém um Kc
desconhecido que pode ser ajustado com a finalidade de gerar estabilidade ao
sistema. A equacado caracteristica na sua forma canbnica € formada por dois
polinémios onde o de menor grau é multiplicado pelo ganho Kc.

Constantinides e Mostoufi (1999) propdéem um algoritmo que, para ser
rodado, o usudrio deve entrar com os coeficientes do menor e do maior polinémio
que constituem a equacao caracteristica, e uma faixa de pesquisa para o Kc. Uma
condicao para que o programa rode € que o valor critico de Kc deve estar entre os
limites inferior e superior escolhidos. Esse fato ocorre quando Kc1 (limite inferior)
gera uma equacao que confere estabilidade ao sistema e Kc2 (limite superior),
instabilidade, o que prova que o ponto critico se encontra dentro desse intervalo.

Para o programa retornar resultados quanto a aplicacdo do critério de
estabilidade e determinar se o método da bissec¢do deve prosseguir entre os
limites, foi criada a funcao binaria “stb/”. A funcéo é binaria pois admite valor de 1
para quando Kc gera estabilidade (todas raizes com parte real negativa) e valor de
0 para quando Kc gera instabilidade (pelo menos uma raiz com parte real positiva).
“Stbl1” e “stbl2” sdo fungdes auxiliadoras desse mecanismo. Ao considerar Kc1 e
Kc2 iniciais, tem-se as proposicoes abaixo:

_ (0, sistema instavel
sthl = {1, sistema estavel (3:32)
f(Kcl) = stbll e f(Kc2) = stbl2 (3.33)

Se f(Kcl) = f(Kc2),stbl1l = stbl2, valor critico ndo se encontra no intervalo

(3.34)



42

i ) Kcl + Kc2
Se f(Kcl) #+ f(Kc2),stbl1 # stbl2, método continua e Kc = —
(3.35)
Kc+ Kc2
Se f(Kc) = f(Kc1),stbhl = sthll,Kc'l = Kce Kc'2 = Kc2,portanto Kc' = —
(3.36)
Kcl+ Kc
Se f(Kc) = f(Kc2),stbl = stbl2,Kc'1 = Kcl e Kc'2 = Kc,portanto Kc' = —

(3.37)

O meétodo encontra o valor final de Kc (ponto critico) quando o critério de
convergéncia proposto pelo usuario for satisfeito (CONSTANTINIDES; MOSTOUFI,
1999).

AKc = |Kcl — Kc2| (3.38)

A escolha certa da faixa de pesquisa € imprescindivel para a viabilidade do
método. Dependendo dos limites selecionados, o programa pode nao rodar. No
caso do trabalho académico desenvolvido por Salvarani (2015) - que discutiu sobre
o controle proporcional em CSTR’s isotérmicos - o autor fez uso da programacao
encontrada em literatura sem nenhuma modificacao.

Salvarani (2015) optou por um extremo inferior Kc1 = 0, condicdo de malha
aberta, e um extremo superior Kc2 = 100, ao saber que o ponto critico obtido
analiticamente foi de 75,1584. As raizes para cada Kc inicial foram calculadas e
constatou-se que Kc1 gerou raizes exclusivamente negativas e Kc2, raizes
complexas conjugadas com parte real positiva (CONSTANTINIDES e MOSTOUFI,
1999). Portanto houve uma mudanga de sinais nas raizes, o que representa a
presenca do valor critico no intervalo. Posto isso, o mesmo intervalo foi bi
seccionado e Kc = 50 (ponto médio) admitido como novo extremo. Kc1 = 50 gerou
todas suas raizes com parte real negativa, o que levou o programa a substituir Kc1
= 0 por Kc1 = 50 e bi seccionar o intervalo entre 50 e 100 (stbl1 = 1 e stbl2 = 0).
Esse procedimento foi repetido 19 vezes até o mddulo da diferenca entre os dois

extremos atingir o critério de convergéncia de 10*-3, proposto em literatura.
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Portanto, Salvarani (2015) obteve sucesso no calculo do Kc critico ao usar
diretamente os comandos encontrados na literatura. Nao foi o caso desta
monografia, que demandou alguns ajustes a fim de viabilizar a execugcédo do
programa.

Os primeiros parametros testados para calcular os coeficientes de entrada
da equacéo caracteristica foram fornecidos por Constantinides e Mostoufi (1999) e
0 ganho critico obtido analiticamente para esses parametros foi de 3,9179. O
método de Routh para esse calculo foi descrito por Carvalho (2014). A partir desses
dados, foram geradas as raizes para Kc1 = 0 e Kc2 = 5, mas o programa para, sem
produzir mais iteragdes. O que ocorreu foi que, para Kc1 = 0, as raizes reais foram
-0,2, -0,2, -0,1 e 3,6"107-12. Para o algoritmo, a ultima raiz citada é positiva (stbl1
= 0), assim como em Kc = 5 (stbl2 = 0), que gerou raizes -0,40341, -0,1131,
0,008255 + 0,2808i e 0,008255 — 0,2808i. Logo, retornou que o valor critico ndo se
encontrava naquele intervalo. A afirmacao € falsa, posto que o fato ja tinha sido
constatado com o método de Routh.

Existem alguns valores no MATLAB chamados “floating-numbers”, que nao
conseguem ser armazenados na forma binaria. Isso pode ter sido uma das causas
para que esse valor positivo infinitamente pequeno fosse gerado como raiz em Kc
=0 (MOLER, 1996). Portanto, foi aplicada a fungdo Round no intuito de arredondar
3,6*10"-12 a zero. Mesmo ao eliminar o valor positivo, o zero também se tornou um
empecilho, pois o algoritmo estava programado para retornar como estavel
somente Kc’s que gerassem raizes com parte real negativa. Nesse caso, havia uma
parte real nula.

Ao considerar a definicdo de erro apresentada na secado 2.2 e o tipo de
processo proposto, como explanado na secéo 2.2.4, houve a alternativa de optar
por um Kc1 maior que 0, como 0,0001, com a justificativa de Kc ser positivo para o
controle de acao reversa.

No entanto, foi decidido analisar a estabilidade usando como limite inferior
de pesquisa a malha aberta (Kc1 = 0), como descrito em Constantinides e Mostoufi
(1999). Constatou-se que a raiz zero ndo € um polo, conforme a seg¢ao 2.3.3.
Quando Kc = 0, a funcao transferéncia assume esta configuragéo:

250 534100 s24+10s
2500 s*%+1250 s3+200 s2+10 s

G(s) =

(3.39)
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Ao considerar que s = 0 é raiz do denominador, isto supde que também seja
polo da funcao transferéncia. Mas para que uma raiz seja polo, G(s) —» o, 0 que

nao ocorre. Ao substituir s por zero em toda fungéo, tem-se uma indeterminagao
, . 0 N . . g
algébrica G(s) =< Para resolvé-la, foi aplicada a regra de L’Hépital, como

proposto por Chen (1993), para resolver limites indeterminados:

G(s) = Lim X&) = i M) — 4 (3.40)
N

50D(s)  s-0DI(s)

A convergéncia para o valor de 1 sé comprovou que 0 nao é um polo para a
Equacao 3.36. Desse modo, Kc1 = 0 sé apresentou polo negativo, logo o sistema
em malha aberta é estavel.

Tendo em vista que, na pratica, a raiz zero da primeira iteragdo nao tem
efeito sobre a estabilidade, a estrutura de programacao foi adaptada para que esse
detalhe ndo afetasse a execucdo dos comandos. A parte real nula da raiz foi
incluida como condicao de estabilidade. Na pratica, isso ndo é fato, como se pode
conferir nos critérios de estabilidade descritos na secao 2.3.4. A inclusao dessa
nova condicao teve apenas a finalidade de viabilizar novas iteragoes.

O mesmo procedimento foi realizado para a equagao caracteristica definida
na Equagédo 3.23, cujo resultado foi demonstrado no tépico 4 Resultados e
Discussao.

Os comandos que executam as etapas dessa secdo, adaptados de

Constantinides e Mostoufi (1999), se encontram no Apéndice B.
3.4.3 SIMULACAO PARA DIFERENTES VALORES DO GANHO PROPORCIONAL

Depois de identificar o valor critico, esse serviu como parametro para
escolher mais dois valores de Kc a serem simulados para a analise de estabilidade
do sistema. Para a regido de estabilidade, considerou-se Kc = 3 e para a regiao de
instabilidade, Kc = 10, ja que o Kc critico obtido foi de 5,8426.

Ao atribuir esses valores a Equacgao 3.23, foram obtidas trés FT’s:

Y(s) 237,12 53495 5%+9,5 5
d(s)  2252,64 s*+1139,62 s3+275,025 s2+69,35 s+6,3

G(s) = Kc =3 (3.41)
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3 2
G(S) _ @ _ 237,12 53495 s“+9,5 s Kc = 58426 (342)

- d(s) - 2252,64 s*+1139,62 s3+360,0898 s2+126,0598 s+12,2695 ’

Y(s) _ 237,12 53+955%+9,5 s
d(s)  2252,64 s*+1139,62 s3+484,5 s2+209 s+21

G(s) = ,Kc =10 (3.43)

As simulacdes foram feitas para perturbagdes na entrada do tipo impulso e
degrau unitarios. Portanto, foram necessarias suas TL’s, que podem ser
encontradas na Tabela A-1 de Ogata (2011). Constatou-se que:

Para o impulso unitario, L[§(t)] =1  (3.44)

Para o degrau unitario, L[1(t)] = 1/s (3.45)

A fim de compreender melhor a algebra por tras dessas transformadas, os
célculos se encontram em Smith e Corripio (2008). Deste modo, Y(s) = G(s) * d(s),
onde d(s) = 1 para a perturbagdo em impulso unitario na entrada e d(s) = 1/s,
para o degrau unitario.

A expansdo em fragdes parciais de Y (s) foi feita com o auxilio da fungao
Residue no MATLAB. Residue apresenta uma configuracao especifica que solicita
a entrada do numerador e do denominador da funcao transferéncia a fim de ter
como saida as raizes (“p”), os coeficientes das variaveis (“C”) e uma constante “K”,
que pode ser nula ou nao. [C, p, K] = residue (num den); onde “num” é o vetor dos
coeficientes do numerador da funcao transferéncia e “den”, do denominador.

A partir desses dados, foi possivel calcular a transformada inversa de Y(s) e

se obteve o comportamento dindmico da resposta no dominio do tempo y(t).
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4 RESULTADOS E DISCUSSAO

O procedimento mencionado na secdo 3.4.2.1 foi realizado com os
parametros admitidos para esta monografia. Entrou-se com os coeficientes que
constituem a equagéo caracteristica, a faixa de pesquisa para Kcde 0 a 10 e 0
método de pesquisa de raizes Newton-Raphson com divisdes sintéticas.

O valor critico foi encontrado quando o critério de convergéncia de 107-5 foi
atingido, ap6s 22 iteracdes. O algoritmo calculou 5,841932 para o maior valor de
Kc que gera estabilidade e 5,841942 para o menor que gera instabilidade. Deste
modo, o valor critico esta nesse intervalo-limite. O resultado gerado na Command
Window é ilustrado na Figura 4.1:
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Figura 4.1 — Resultado do algoritmo programado para pesquisar o valor critico de Kc

coeflcientes menor polindmioc = [22.925 19.95 Z.1];
coeficientes malor polindmic = [2252.64 1139.62 185.25 9.5 B@];
Limite infericr da faixa de pesqulisa= &

Limite supericr da faixa de pesquisa= 18

1) HNewton-Raphson com divisBho sintética

Entre com 1 para o Hétodo para Cnocontrar Raizes de MR = 1

Ko = 6. 233068

Roots = -8_.38333 -@.1923] -8, 18538 =)

Ko = 18. 309062

Boots = -8 48165 -8.1313]1 8. 81353+8 42821 S.81353-23.42a325

Ko = S.2aa06s

Roots = -@_ 3E665 -8.1316]1 -0.283E22+0.3160E1 -B.903822-2. 31881
Ko = 7.5S2a06s

Boots = -@_3R590 -8, 13141 8. 68G244+0. 37871 8. 8862449-8_37871

Ko = G 258868

Roots = -@_3I7777 -8.13145% @ B6&15676+0. 34251 8_B21675-8_ 34251

Ko = S.625868

Foots = -8_37240 -@.13154 -08.28003404+82_ 33711 -2.0829343-6.32711
e = 5.9375683

Roots = -8 37510 -8.1315] 8.62848]19+0.3533401 08.2804810-3 . 33451
e = 5. 781258

Boots = -@_3I738BE6 -8.13153 -08.28035383+2.33111 -2.09862825E3-6.33111
e = S.H593F5

Foots = -8_.37453 -@.13152 7_.377e-85+B.3331 7.377e-85-8.3331

e = 5.828312

FBoots = -8_.3742 -8_13152 -9_177e-85+B8.3321 -9.177e-85-8.3321

Ko = S.H3I9E44

Boots = -8_37436 -8.13152 -2, 871e-86+2.3335] -B.8Fle-B5-8.33251
Ko = 5. .B49G6E3

Foots = -8_37445 -8.13152 3. 248e-85+80.3332E]1 3. 248e-85-2.3328]
e = 5.8447327

FBoots = -8_37441 -8.13152 1.181e-85+8.33261 1.181le-85-2.3325]1
Ko = S.HA42ZES

FRoots = -8_.37430 -8.13152 1. 475e-85+8.33261 1.473e-86-2.3325]1
Ko = S 41864

Roots = -8_.37437 -8.13152 -3 . 698e-a6+8.3336] -3.60Ha-B6-8.33261
Ko = 5.BA1675

Roots = -8_.3743E -8.13152 -1.11Ze-86+8.33236] -1.112=-86-8.33261
Ko = 5.B41088

Roots = -8.3743E -8.13152 1 _E8Ge-@7+8.333161 1. .886e-87-2.3326]1
Ko = 5.B41837

Roots = -8_.3743E -8.13152 -4 . 658e-a87+8.3336] -4.65Ha-87-8.33261
Ko = 5.841084

Roots = -@_.3743E -8.13152 -1 . 426e-a87+8.3336] -1.436-87-8.33261
e = 5.8419043

Roots = -8_.3743E -8.13152 1. S08de-238@+8.33261 1.98de-88-2.3326]
Ko = S.841933

Roots = -8_.3743E -8.13152 -6 .176e-88+8.3336] -&.176=-8H-8.33261
Ko = 5.841932

Roots = -8.3743E -8.13152 -Z.156e-88+8.3336] -2.136=-8H-8.33261

O valor critico de Ko & afncontra no intervalo entee

KEcl= 5.84]1937 & K2 = 5841942

Fonte: O préprio autor

Em sequéncia, foram realizadas as simulagbes para os trés casos das
Equacdes 3.41, 3.42 e 3.43.

Para a perturbagdo degrau, como d(s) = 1/s, um novo fator foi gerado no
denominador, pois foi adicionada uma raiz igual a zero. Portanto o vetor do
denominador ganhou uma posi¢cao a mais, que foi preenchida por um zero. Para a
perturbagao impulso, como d(s) = 1, essa condigao algébrica ndo foi considerada,
logo ndo houve alteracdes no vetor do denominador.

As Tabelas 4.1 e 4.2 representam as saidas da fungdo Residue para cada
Kc sob perturbagdes impulso e degrau:



Tabela 4.1 - Saidas da fungao Residue para diferentes Kc sob perturbagao impulso

Impulso
Kc Coeficientes Raizes Constante
0,0205 10,3422
0,0444 + 0,00651  -0,0158 + 0,2483i
3 0,0444 — 0,0065i 10,0158 — 0,2483i K=0
10,0040 10,1320
0,0196 -0,3744
0,0439 + 0,0061] 0 + 0,3326i
58426 0,0439 — 0,006 0-0,3326i K=0
10,0021 10,1315
0,0442 + 0,006 0,015 + 0,4202i
0,0442-0,0061i 0,035 — 0,4202i
10 0,0181 10,4017 K=0
10,0012 10,1313

Fonte: O préprio autor
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Tabela 4.2 - Saidas da fungédo Residue para diferentes Kc sob perturbacao degrau

Degrau

Kc Coeficientes

Raizes Constante

-0,0598
0,0146 —0,1799i

0,0146 + 0,1799i

-0,3422
-0,0158 + 0,2483i

-0,0158 — 0,2483i

3 K=0
0,0307 -0,1320
0 0
-0,0523 -0,3744
0,0182 - 0.1320i 0 + 0,3326i
58426 0,0182 + 0.1320i 0 - 0,3326i K=0
0,0158 -0,1315
0 0
0,0179 — 0,1045i 0,0135 + 0,4202i
0,0179 + 0,1045i 0,0135 - 0,4202i
10 -0,0452 -0,4017 K=0
0,0093 -0,1313
0 0

Fonte: O préprio autor

A partir dos dados oriundos das Tabelas 4.1 e 4.2, fragbes parciais foram

estruturadas para o célculo das TLI's com o fim de analisar o comportamento

dinamico da resposta no dominio do tempo.

Os comandos criados para gerar os dados das Tabelas 4.1 e 4.2 se

encontram no Apéndice C.
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As equacbes a seguir representam as respostas do sistema apds a

transformada inversa em Y (s):

o Kc = 3, perturbagéo impulso (1) e degrau (2):

y,(t) = 0,0205¢03422t _ (0 00401320t 4 2-0.0158¢[( 0444 cos(0,2483¢t) — 0.0065sen(0,2483¢t)]
(4.1)

y,(t) = —0,0598e 03422t 4 (030701320t 4 20-0.0158[( 0146 c0s(0,2483t) + 0,1799sen(0,2483t)]
(4.2)

o Kc = 5,8426 (critico), perturbacao impulso (3) e degrau (4):

4(£) = 0,0196e 03744 — 0,0021e~%1315¢ 4+ 2[0,0439 cos(0,3326t) — 0,0061sen(0,3326t)]
y
(4.3)

y,(t) = —0,0523e 703744t 4 0,0158¢~01315¢ 4 2[0,0182 cos(0,3326t) + 0,1320sen(0,3326t)]
(4.4)

o Kc = 10, perturbacéo impulso (5) e degrau (6):

ys(t) = 0,0181e 04017t _ 0,012 01313t 4 2¢0.0135t[0 0442 cos(0,4202¢) — 0,0061sen(0,4202¢)]
(4.5)

y(t) = —0,0452¢ 704017t 4 (0 009301313t 4 200.0135t[0 0179 cos(0,4202t) + 0,1045sen(0,4202t)]
(4.6)

A partir das equacdes acima, péde-se plotar os graficos que foram utilizados
para simular e analisar a estabilidade do sistema. Os comandos criados para gerar
esses graficos estao descritos no Apéndice D.

As Figuras 4.2 e 4.3 representam o comportamento dindmico da resposta
para as Equacées 4.1 e 4.2, respectivamente:



Figura 4.2 - Gréfico da resposta ao impulso para Kc = 3
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Figura 4.3 - Gréfico da resposta ao degrau para Kc = 3
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Com o objetivo de interpretar e compreender a condicao do sistema em

determinadas circunstancias, foi necessario conceituar a amplitude observada no

eixo y dos graficos acima. Tendo em vista que y(t), na realidade, ndo € a variavel

controlada, e sim a variavel-desvio dessa, entende-se como modulo da amplitude
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o afastamento da variavel controlada em relacdo ao seu valor no regime
estacionario (set point). Portanto, quando a amplitude for zero, significa que o
desvio € nulo e a variavel se encontra em estado estacionario no valor de set point.
Em contrapartida, quando a amplitude for positiva ou negativa (mddulo diferente de
zero), ocorreu o afastamento da variavel em relagdo ao set point, o que implica em
um desvio.

Os graficos acima mostram que, com o ganho proporcional ajustado em Kc
= 3, as respostas para ambas perturbacdes tiveram comportamento oscilatério e
essas oscilagbes foram amortecidas ao longo do tempo até a resposta convergir ao
estado estaciondrio e ter o desvio eliminado. Isso se deu devido aos polos reais
negativos e complexos com parte real negativa. O sistema é estavel.

Nos casos ilustrados nas Figuras 4.4 e 4.5, com o Kc ajustado no ponto
critico, foi observado como as respostas para ambas perturbagdes tiveram
comportamento oscilatério com amplitude constante ao longo do tempo. O desvio
permaneceu e a variavel controlada ndo retornou ao set point. Isso se deu devido
aos polos imaginarios puros obtidos juntamente com polos reais negativos. O

sistema é criticamente estavel.



53

Figura 4.4 - Gréfico da resposta ao impulso para Kc critico 5,8426
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Figura 4.5 — Grafico da resposta ao degrau para Kc critico 5,8426
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Nos graficos das Figuras 4.6 e 4.7, foi observado que, com o ganho
proporcional ajustado em Kc = 10, as respostas para ambas perturbacdes tiveram
comportamento oscilatério com amplitude crescente ao longo do tempo, o que torna
o desvio impossivel de ser eliminado. Isso se deu devido aos polos complexos

conjugados que apresentaram parte real positiva. O sistema é instavel.



Figura 4.6 - Grafico da resposta ao impulso para Kc = 10

Comportamento da resposta ao impulso para Ke=10

80

60

[uu] 3
=] =}

=}

Amplitude

................. —

R
&

i
=]

60

-80 : : : :
0 100 200 300 400 500
Tempo {segundos)

Fonte: O proprio autor

Figura 4.7 - Grafico da resposta ao degrau

500 Comportamento da resposta ao degrau para Ke=10
150 f J

100 f H

a0

\
0 fommmm s IS V\PRFUP\/‘UF\ j\r

Il

Amplitude

-90 F

-100 |

-130 |

-200 . ' . :
0 100 200 300 400 500
Tempo (segundos)

Fonte: O préprio autor



55

5 CONCLUSAO

Esse trabalho foi relevante por demonstrar dois meios de analisar a
estabilidade de um sistema de controle: por métodos numéricos e pelo método
analitico de Routh.

No método analitico, a analise foi feita pela localizagdo das raizes sem o
conhecimento de seus valores. A sua localizacao foi conhecida por meio de testes
algébricos. A importancia do seu emprego se deve ao fato de nao exigir a
determinacao das raizes para andlise.

Quanto aos métodos numéricos, 0 MATLAB se mostrou uma ferramenta util
por executa-los por meio de um algoritmo. A anélise através desse algoritmo foi
realizada pelo calculo das raizes da equacéao caracteristica e a avaliagdo quanto a
sua posicao no plano complexo. O software também proporcionou a geragao de
gréficos que, visualizados, pbéde-se concluir em qual condigcdo de estabilidade
simulada o controle PID teve melhor desempenho.

No processo proposto, como o controle PID tem a finalidade de retornar a
variavel controlada ao valor de set point, 0o ajuste do ganho proporcional que
mostrou um melhor desempenho dentre as trés opg¢des simuladas foi o Kc = 3, onde
o sistema é estavel. Portanto, o controle nesse ajuste foi mais eficaz.

J&, para os outros ajustes, o controle nao cumpriu sua finalidade. O ajuste
no ganho critico 5,8426 pode ser plausivel para outros exemplos, mas no caso
estudado, ndo foi aceito, pois 0 desvio em relagdo ao set point permaneceu
constante ao longo do tempo. Quanto ao ajuste em Kc = 10, esse foi totalmente
descartado pelo fato de o sistema ser instavel, o que torna o controle ineficaz.
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APENDICE A - Programacao para criar a funcao NRsdivision que executa o
método de Newton-Raphson com divisdes sintéticas

function x = NRsdivision(c,tol) % funcdo de Newton-Raphson criada

if nargin < 2 || isempty(tol) % isenta o usuario de entrar com uma tolerancia
tol = 10"-6;

end

if tol ==

tol = 10"-6; % convergéncia maxima para encontrar a raiz inicial

end

length(c)-1; % grau do polindémio a ser decomposto
Cc; % o vetor dos coeficientes do polinomio de grau n

Q S
Il

for k = n:-1:3 % polindbmios sao passiveis de divisao sintética até n=3

x0= -a(2)/a(l); % estimativa inicial considerando truncamento das menores
poténcias

x1 = x0 + 0.1; % atribui valor inicial a raiz

iter = 9; % contagem das iteracoes

maxiter = 100; % maxima itera¢do possivel

% Resolucao pelo Método de Newton Raphson

while abs(x@ - x1) > tol && iter < maxiter % condi¢bes de parada

iter = iter + 1;

X0 = x1;

fnk = polyval(a,x0); % valor da fun¢do para a estimativa inicial

fnkp = polyval(polyder(a),x0); % valor da derivada da func¢do para a estimativa
inicial

if fnkp ~= 0
x1 = x@ - fnk/fnkp; % aproximacao seguinte
else

x1 = x0 + 0.01; % valor alternativo que retorna, caso a derivada seja nula
end

end

x(n-k+1) = x1; % primeira raiz real obtida por divisdo sintética

% Calculo dos coeficientes do polindémio de grau n-1 a partir da remoc¢ao
% de x1

b(1) = a(1);

for r = 2:k

b(r) = a(r) + b(r-1)*x1;

end

if iter == maxiter

disp ('Aviso: Maior Iterac¢do Atingidal!')

end

clear a

a = b;

clear b

end

% calculo das raizes da fungao quadratica final, geralmente pares conjugados
complexos

delta = a(2)”2 - 4*a(1l)*a(3);

x(n-1)= (-a(2) - sqrt(delta))/(2*(a(1)));

x(n)= (-a(2) + sqrt(delta))/(2*(a(1)));

x=x"; % expbe as raizes na horizontal
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APENDICE B - Programacio para pesquisa do ponto critico pelo Método da

Bisseccao

clear

clc

% Entrada dos coeficientes da equag¢do caracteristica
num = input ('coef. menor polinomio = ');

denom = input('coef. maior polinomio = ');

disp('")

% Entrada dos limites de pesquisa para Kc
Kcl = input('Limite inferior da faixa de pesquisa= ');
Kc2 = input('Limite superior da faixa de pesquisa= ');

disp('")

disp(' 1) Newton-Raphson com divisdo sintética')

method = input('Entre com 1 para o Método para Encontrar Raizes de NR = ');
iter = 0;

nl= length(num); % comprimento do vetor dos coef. menor polindémio
n2= length(denom); % comprimento do vetor dos coef. maior polinémio
c(1:n2-n1) = denom(1:n2-nl);

% Loop para encontrar Kc critico
while abs(Kcl - Kc2) > 10~-5 % critério de convergéncia
iter = iter +1;

if iter == 1 % primeira iteracao

Kc = Kcl; % Limite inferior

elseif iter == 2 % segunda iteracao

Kc = Kc2; % Limite superior

else

Kc = (Kcl + Kc2)/2; % Aproximag¢ao seguinte (NOVO Kc)
end

% Calculo dos coef. da equag¢ao na forma candnica
for m= n2-n1+41 : n2

c(m)= denom(m) + Kc*num(m-n2+nl);

end

% Encontrar Raizes
switch method % insere o metodo a ser utilizado
case 1 % Newton Raphson com divisodes sintéticas

root = NRsdivision(c);

case 2 % Método do Autovalor
root = roots(c);

end

fprintf('\n Kc = %8.6Ff\n Roots = ',Kc) % saida dos valores de Kc

for k = 1:1length(root)

if isreal(root(k)) % caso as raizes sejam reais

if root(k) > @ && root(k) < 1le-6 %arredondamento da raiz infinitamente pequena a
0

% no caso da malha aberta (Kc=0) a fim de viabilizar a rodagem dos cdédigos
root(k) = round(root(k));

else

root(k) = root(k);

end

realpart = real(root); % parte real das raizes



60

imagpart = imag(root); % parte imagindria das raizes

fprintf('%7.5g ', (root(k))) % saida das raizes calculadas para cada Kc

else

fprintf('%6.4g"' ,realpart(k))

if imagpart(k) >= 0

fprintf('+%5.4gi ',imagpart(k))

else

fprintf('-%5.4gi ',abs(imagpart(k)))

end

end

end

disp('")

% Condicao de Estabilidade do Sistema que Determina Quando o Programa Deve Cessar
stbl=0; % fun¢do binaria de reconhecimento da estabilidade

for m = 1: length(root)

if realpart(m)<= @ % caso a parte real seja negativa; a condi¢ao de ser nula
% parte do fato que o programa se inicia com uma condi¢dao de malha aberta e a
raiz=e

% nao é polo

stbl = 1; % caso a afirmacao seja verdadeira, sistema estavel

else % caso a afirmacao seja falsa

stbl = 9; %sistema instavel

break;

end

end

if iter ==

stbll = stbl; % valor de stbl para o Kcl inicial
elseif iter ==

stbl2 = stbl; % valor de stbl para Kc2 inicial

if stbll == stbl2 % caso os valores sejam iguais
error('Valor critico esta fora do intervalo escolhido.'); %erro
end

else

if stbl == stbll % caso o stbl de Kcl seja igual ao do novo Kc
Kcl = Kc; % o novo Kc se torna o novo limite inferior

else % caso o stbl de Kc2 seja igual ao novo Kc
Kc2 = Kc; % o novo Kc se torna o novo limite superior

end

end

end

% saida do valor critico de Kc, encontrado ao atingir a convergéncia maxima

fprintf('\n O valor critico de Kc")

fprintf('\n se encontra no intervalo entre')

fprintf('\n Kcl= %8.6f e Kc2 = %8.6f"', Kcl, Kc2')



APENDICE C - Expansio em fracdes parciais com a funcido Residue para
diferentes valores de Kc sob perturbacao impulso e degrau

% Expansao em fragbes parciais para o impulso

num=[237.12 95 9.5 0];

Kc=input('Entre com 3 valores de Kc:');

for r=1:3

den=[2252.64 1139.62 29.925*Kc(r)+185.25 19.95*Kc(r)+9.5 2.1*Kc(r)];
printsys(num,den, 's")

[C,p,K]=residue(num,den)

end

% Expansao em fragdes parciais para o degrau

num=[237.12 95 9.5 0];

Kc=input('Entre com 3 valores de Kc:');

for r=1:3

den=[2252.64 1139.62 29.925*Kc(r)+185.25 19.95*Kc(r)+9.5 2.1*Kc(r) 0];
printsys(num,den, 's")

[C,p,K]=residue(num,den)

end
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APENDICE D - Programacao para geracao de graficos do comportamento
dinamico da resposta para diferentes valores de Kc sob perturbacoes

impulso e degrau

% Grafico da resposta para Kc=3, perturbag¢ao impulso
t=0:0.001:500;

a=0.0205*exp(-0.3422*%t);

b=-0.004*exp(-0.1320*t);
c=((2*exp(-0.0158*t)).*(0.0444*cos(0.2483*t)-0.0065*sin(0.2483*t)));
yl=a+b+c;

plot(t,yl)

grid on

xlabel('Tempo (segundos)')

ylabel('Amplitude")

title('Comportamento da resposta ao impulso para Kc=3')

% Grafico da resposta para Kc=3, perturbacao degrau
t=0:0.001:500;

a=-0.0598*%exp(-0.3422*t);

b=0.0307*exp(-0.1320*t);
c=((2*exp(-0.0158*t)).*(0.0146*Ccos(0.2483*t)+0.1799*sin(0.2483*t)));
y2=a+b+c;

plot(t,y2)

grid on

xlabel('Tempo (segundos)')

ylabel('Amplitude")

title('Comportamento da resposta ao degrau para Kc=3")

% Grafico da resposta para Kc=5.8426 (critico), perturba¢ao impulso
t=0:0.001:500;

2=0.0196*exp(-0.3744*t);

b=-0.0021*exp(-0.1315*t);
€=2%(0.0439*c0s(0.3326*t)-0.0061*sin(0.3326%t));

y3=a+b+c;

plot(t,y3)

grid on

xlabel('Tempo (segundos)')

ylabel('Amplitude")

title('Comportamento da resposta ao impulso para Kc=5.8426")

% Grafico da resposta para Kc=5.8426 (critico), perturba¢do degrau
t=0:0.001:500;

a=-0.0523%exp(-0.3744*t);

b=0.0158*exp(-0.1315%t);
c=2*(0.0182*C0s(0.3326*t)+0.1320*sin(0.3326*t));

yd=a+b+c;

plot(t,y4)

grid on

xlabel('Tempo (segundos)"')

ylabel('Amplitude")

title('Comportamento da resposta ao degrau para Kc=5.8426")

% Grafico da resposta para Kc=10, perturba¢ao impulso
t=0:0.001:500;

2=0.0181*exp(-0.4017*t);

b=-0.012*exp(-0.1313*t);
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c=((2*exp(0.0135*%t)).*(0.0442%c0s(0.4202%t)-0.0061*sin(0.4202%t)));
y5=a+b+c;

plot(t,y5)

grid on

xlabel('Tempo (segundos)')

ylabel('Amplitude")

title('Comportamento da resposta ao impulso para Kc=10')

% Grafico da resposta para Kc=10, perturbacao degrau
t=0:0.001:500;

a=-0.0452*%exp(-0.4017*t);

b=0.0093*exp(-0.1313*t);
c=((2*exp(0.0135*t)).*(0.0179%c0s(0.4202*t)+0.1045*%sin(0.4202*t)));
y6=a+b+c;

plot(t,y6)

grid on

xlabel('Tempo (segundos)')

ylabel('Amplitude")

title('Comportamento da resposta ao degrau para Kc=10'")
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